يعرض 1 - 20 نتائج من 5,062 نتيجة بحث عن '(( algorithm ai functional ) OR ( ((algorithm python) OR (algorithm b)) function ))*', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
  2. 2

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer حسب Morgan Najera (21540776)

    منشور في 2025
    "…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
  3. 3

    An expectation-maximization algorithm for finding noninvadable stationary states. حسب Robert Marsland (8616483)

    منشور في 2020
    "…<i>(b)</i> Metabolic byproducts move the relevant unperturbed state from <b>R</b><sup>0</sup> (gray ‘x’) to (black ‘x’), which is itself a function of the current environmental conditions. …"
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

    Fig 6 - حسب Reinhard Chun Wang Chau (12733662)

    منشور في 2022
    الموضوعات:
  13. 13
  14. 14

    Fig 5 - حسب Reinhard Chun Wang Chau (12733662)

    منشور في 2022
    الموضوعات:
  15. 15
  16. 16

    Fig 7 - حسب Reinhard Chun Wang Chau (12733662)

    منشور في 2022
    الموضوعات:
  17. 17

    Fig 4 - حسب Xutao Liu (13006965)

    منشور في 2023
    الموضوعات:
  18. 18

    Fig 9 - حسب Xutao Liu (13006965)

    منشور في 2023
    الموضوعات:
  19. 19

    Fig 10 - حسب Xutao Liu (13006965)

    منشور في 2023
    الموضوعات:
  20. 20

    datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf حسب Santiago Hernández-Orozco (5070209)

    منشور في 2021
    "…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"