بدائل البحث:
algorithm related » algorithm reduced (توسيع البحث), algorithm predicted (توسيع البحث), algorithms reported (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
related function » related functions (توسيع البحث), related functional (توسيع البحث), rate function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
algorithm related » algorithm reduced (توسيع البحث), algorithm predicted (توسيع البحث), algorithms reported (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
related function » related functions (توسيع البحث), related functional (توسيع البحث), rate function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
-
101
Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements
منشور في 2021"…<div>This directory contains Python 3 scripts implementing the Trajectory Adaptive Multilevel Sampling algorithm (TAMS), a variant of Adaptive Multilevel Splitting (AMS), for the study of rare events. …"
-
102
Bioinformatics pipeline for circadian function.
منشور في 2023"…<u><b>Normalized coefficient of variation (nCV)</b></u>: Clock gene expression produces robust oscillations with the amplitude of the oscillation defined by the difference between peak and trough, and relative amplitude (rAMP) determined by the ratio between amplitude and baseline level of expression (<u>upper left</u>). …"
-
103
-
104
-
105
-
106
-
107
-
108
-
109
BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
منشور في 2019"…Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a <b>B</b>iomass <b>O</b>bjective <b>F</b>unction from experimental <b>dat</b>a. …"
-
110
-
111
-
112
-
113
Fixation time on slow oriented graphs.
منشور في 2024الموضوعات: "…monotonically declining function…"
-
114
Fixation time is not monotone in <i>r</i>.
منشور في 2024الموضوعات: "…monotonically declining function…"
-
115
Long and fast fixation times on a four-column graph <i>G</i><sub><i>N</i></sub>.
منشور في 2024الموضوعات: "…monotonically declining function…"
-
116
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
منشور في 2025"…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
-
117
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
118
-
119
Using synthetic data to test group-searching algorithms in a context where the correct grouping of species is known and uniquely defined.
منشور في 2024"…The final abundances and function (concentration of resource <i>N</i>) are corrupted with Gaussian noise of relative strength <i>ϵ</i> emulating “measurement noise,” and the resulting values are recorded as a “sample” in the dataset. …"
-
120