يعرض 101 - 120 نتائج من 9,259 نتيجة بحث عن '(( algorithm b function ) OR ((( algorithm python function ) OR ( algorithm related function ))))*', وقت الاستعلام: 0.77s تنقيح النتائج
  1. 101

    Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements حسب Pascal Wang (10130612)

    منشور في 2021
    "…<div>This directory contains Python 3 scripts implementing the Trajectory Adaptive Multilevel Sampling algorithm (TAMS), a variant of Adaptive Multilevel Splitting (AMS), for the study of rare events. …"
  2. 102

    Bioinformatics pipeline for circadian function. حسب Patrick B. Schwartz (14782608)

    منشور في 2023
    "…<u><b>Normalized coefficient of variation (nCV)</b></u>: Clock gene expression produces robust oscillations with the amplitude of the oscillation defined by the difference between peak and trough, and relative amplitude (rAMP) determined by the ratio between amplitude and baseline level of expression (<u>upper left</u>). …"
  3. 103
  4. 104
  5. 105
  6. 106
  7. 107
  8. 108
  9. 109

    BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data حسب Jean-Christophe Lachance (6619307)

    منشور في 2019
    "…Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a <b>B</b>iomass <b>O</b>bjective <b>F</b>unction from experimental <b>dat</b>a. …"
  10. 110
  11. 111

    Types of balanced graphs. حسب David A. Brewster (17118328)

    منشور في 2024
    الموضوعات: "…monotonically declining function…"
  12. 112

    Fig 4 - حسب David A. Brewster (17118328)

    منشور في 2024
    الموضوعات: "…monotonically declining function…"
  13. 113

    Fixation time on slow oriented graphs. حسب David A. Brewster (17118328)

    منشور في 2024
    الموضوعات: "…monotonically declining function…"
  14. 114

    Fixation time is not monotone in <i>r</i>. حسب David A. Brewster (17118328)

    منشور في 2024
    الموضوعات: "…monotonically declining function…"
  15. 115

    Long and fast fixation times on a four-column graph <i>G</i><sub><i>N</i></sub>. حسب David A. Brewster (17118328)

    منشور في 2024
    الموضوعات: "…monotonically declining function…"
  16. 116

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit حسب Gonzalo Colmenarejo (650249)

    منشور في 2025
    "…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
  17. 117

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  18. 118
  19. 119

    Using synthetic data to test group-searching algorithms in a context where the correct grouping of species is known and uniquely defined. حسب Yuanchen Zhao (12905580)

    منشور في 2024
    "…The final abundances and function (concentration of resource <i>N</i>) are corrupted with Gaussian noise of relative strength <i>ϵ</i> emulating “measurement noise,” and the resulting values are recorded as a “sample” in the dataset. …"
  20. 120