Search alternatives:
algorithm barrier » algorithm based (Expand Search)
barrier function » cardiac function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
algorithm barrier » algorithm based (Expand Search)
barrier function » cardiac function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
-
21
The pseudocode for the NAFPSO algorithm.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
22
PSO algorithm flowchart.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
23
-
24
-
25
Comparison of different algorithms.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
26
Pt Cluster Catalysts and Alkane to Aromatic Conversion Evaluated Using a Combination of Swarm Intelligence and Density Functional Theory
Published 2025“…Here, we report density functional theory (DFT) calculations combined with a swarm intelligence algorithm to determine Pt positioning and interaction with the zeolite framework and detailed comparison of reaction pathways. …”
-
27
-
28
-
29
Study proposed algorithm.
Published 2025“…The index of microvascular resistance (IMR) is a specific physiological parameter used to assess microvascular function. Invasive coronary assessment has been shown to be both feasible and safe. …”
-
30
Gillespie algorithm simulation parameters.
Published 2024“…Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. …”
-
31
Scheduling time of five algorithms.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
32
Convergence speed of five algorithms.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
33
Modular architecture design of PyNoetic showing all its constituent functions.
Published 2025Subjects: -
34
A Genetic Algorithm Approach for Compact Wave Function Representations in Spin-Adapted Bases
Published 2025“…Crucially, we propose fitness functions based on approximate measures of the wave function compactness, which enable inexpensive genetic algorithm searches. …”
-
35
Multi-algorithm comparison figure.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
36
CEC2017 basic functions.
Published 2025“…During experimental evaluation, the efficiency of OP-ZOA was verified using the CEC2017 test functions, demonstrating superior performance compared to seven recently proposed meta-heuristic algorithms (Bloodsucking Leech Algorithm (BSLO), Parrot Optimization Algorithm (PO), Polar Lights Algorithm (PLO), Red-tailed Hawk Optimization Algorithm (RTH), Bitterling Fish Optimization Algorithm (BFO), Spider Wasp Optimization Algorithm (SWO) and Zebra Optimization Algorithm (ZOA)). …”
-
37
-
38
Both Ankle fNIRS MI dataset
Published 2025“…<p><br></p><p dir="ltr">This dataset contains functional near-infrared spectroscopy (fNIRS) signals recorded during motor imagery (MI) tasks of lower limb movements. …”
-
39
Both Knees fNIRS MI dataset
Published 2025“…<p><br></p><p dir="ltr">This dataset contains functional near-infrared spectroscopy (fNIRS) signals recorded during motor imagery (MI) tasks of lower limb movements. …”
-
40