Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
-
41
Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100)
Published 2025“…Bias correction was conducted using a 25-year baseline (1990–2014), with adjustments made monthly to correct for seasonal biases. The corrected bias functions were then applied to adjust the years (2020–2100) of daily rainfall data using the "ibicus" package, an open-source Python tool for bias adjustment and climate model evaluation. …”
-
42
Code and data for evaluating oil spill amount from text-form incident information
Published 2025“…These are separately stored in the folders “description” and “posts”.</p><h2>Algorithms for Evaluating Release Amount (RA)</h2><p dir="ltr">The algorithms are split into the following three notebooks based on their functions:</p><ol><li><b>"1_RA_extraction.ipynb"</b>:</li><li><ul><li>Identifies oil spill-related incidents from raw incident data.…”
-
43
Seamless integration of legacy robotic systems into a self-driving laboratory via NIMO: a case study on liquid handler automation
Published 2025“…We developed NIMO (formerly NIMS-OS, NIMS Orchestration System), an OS explicitly designed to integrate multiple artificial intelligence (AI) algorithms with diverse exploratory objectives. NIMO provides a framework for integrating AI into robotic experimental systems that are controlled by other OS platforms based on both Python and non-Python languages. …”
-
44
CSPP instance
Published 2025“…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…”
-
45
Code
Published 2025“…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
-
46
Core data
Published 2025“…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
-
47
Data Sheet 1_Machine learning models integrating intracranial artery calcification to predict outcomes of mechanical thrombectomy.pdf
Published 2025“…Eleven ML algorithms were trained and validated using Python, and external validation and performance evaluations were conducted. …”
-
48
MCCN Case Study 2 - Spatial projection via modelled data
Published 2025“…</p><h4><b>Case Study 2 - Spatial projection via modelled data</b></h4><h4><b>Description</b></h4><p dir="ltr">Estimate soil pH and electrical conductivity at 45 cm depth across a farm based on values collected from soil samples. This study demonstrates: 1) Description of spatial assets using STAC, 2) Loading heterogeneous data sources into a cube, 3) Spatial projection in xarray using different algorithms offered by the <a href="https://pypi.org/project/PyKrige/" rel="nofollow" target="_blank">pykrige</a> and <a href="https://pypi.org/project/rioxarray/" rel="nofollow" target="_blank">rioxarray</a> packages.…”
-
49
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”