بدائل البحث:
algorithm both » algorithm blood (توسيع البحث), algorithm b (توسيع البحث), algorithm etc (توسيع البحث)
model function » novel function (توسيع البحث), model fusion (توسيع البحث), model reaction (توسيع البحث)
both function » body function (توسيع البحث), growth function (توسيع البحث), beach function (توسيع البحث)
8217 function » 1 function (توسيع البحث), f7 function (توسيع البحث), f1 function (توسيع البحث)
algorithm both » algorithm blood (توسيع البحث), algorithm b (توسيع البحث), algorithm etc (توسيع البحث)
model function » novel function (توسيع البحث), model fusion (توسيع البحث), model reaction (توسيع البحث)
both function » body function (توسيع البحث), growth function (توسيع البحث), beach function (توسيع البحث)
8217 function » 1 function (توسيع البحث), f7 function (توسيع البحث), f1 function (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
The pseudocode for the NAFPSO algorithm.
منشور في 2025"…In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"
-
7
PSO algorithm flowchart.
منشور في 2025"…In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"
-
8
-
9
Scheduling time of five algorithms.
منشور في 2025"…In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"
-
10
Convergence speed of five algorithms.
منشور في 2025"…In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"
-
11
Results of searching performance of different algorithm models on the Sphere function and Griewank function.
منشور في 2021"…<p>Results of searching performance of different algorithm models on the Sphere function and Griewank function.…"
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20