Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm brain » algorithm ai (Expand Search), algorithm against (Expand Search), algorithm within (Expand Search)
brain functions » brain function (Expand Search), brain functional (Expand Search), basis functions (Expand Search)
python function » protein function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm brain » algorithm ai (Expand Search), algorithm against (Expand Search), algorithm within (Expand Search)
brain functions » brain function (Expand Search), brain functional (Expand Search), basis functions (Expand Search)
python function » protein function (Expand Search)
-
121
Dataset of networks used in assessing the Troika algorithm for clique partitioning and community detection
Published 2025“…Each network is provided in .gml format or .pkl format which can be read into a networkX graph object using standard functions from the networkX library in Python. For accessing other networks used in the study, please refer to the article for references to the primary sources of those network data.…”
-
122
-
123
Presentation of the DySCo framework.
Published 2025“…<p>A: What is dynamic Functional Connectivity: i) We can start from any set of brain recordings, where each signal is referred to a brain location (e.g. fMRI, EEG, intracranial recordings in rodents, and more). ii) “Static” Functional Connectivity (FC) is a matrix where each entry is a time aggregated functional measure of interaction between two regions, for example, the Pearson Correlation Coefficient. iii) Dynamic Functional Connectivity (dFC) is a FC matrix (that can be calculated in different ways, see below) that changes with time, under the assumption that patterns of brain interactions are non-stationary. …”
-
124
Overview of MINT.
Published 2025“…<p>A: List of main MINT functions. B: MINT provides multivariate information theoretic functions to quantify the amount of information that single neurons or neural populations carry about task-relevant variables (e.g., sensory stimuli or behavioral choices). …”
-
125
-
126
-
127
-
128
-
129
-
130
-
131
-
132
-
133
Decoding evidence for feature triplets on test tasks.
Published 2025“…This figure shows average decoding evidence for features associated with the more and less rewarding training policies on test trials (y-axis) as a function of brain region (x-axis). Feature information could not be decoded above chance in the four brain regions of interest (corrected <i>p-</i>values > 0.05). …”
-
134
-
135
-
136
-
137
-
138
-
139
-
140