بدائل البحث:
algorithm catenin » algorithm within (توسيع البحث)
catenin function » catenin functional (توسيع البحث), cohesin function (توسيع البحث), hardening function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm pca » algorithm a (توسيع البحث), algorithm cl (توسيع البحث), algorithm co (توسيع البحث)
pca function » gpcr function (توسيع البحث), a function (توسيع البحث), fc function (توسيع البحث)
algorithm catenin » algorithm within (توسيع البحث)
catenin function » catenin functional (توسيع البحث), cohesin function (توسيع البحث), hardening function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm pca » algorithm a (توسيع البحث), algorithm cl (توسيع البحث), algorithm co (توسيع البحث)
pca function » gpcr function (توسيع البحث), a function (توسيع البحث), fc function (توسيع البحث)
-
121
-
122
List of palmitoylation-related genes.
منشور في 2025"…A diagnostic model based on these genes achieved an AUC of 0.929, demonstrating robust accuracy in distinguishing PCa from normal tissues. Functional analysis revealed roles in lipid metabolism and immune modulation, with ssGSEA highlighting correlations between key genes and immune cell infiltration. …"
-
123
Enrichment analysis of mRNA-RBP.
منشور في 2025"…A diagnostic model based on these genes achieved an AUC of 0.929, demonstrating robust accuracy in distinguishing PCa from normal tissues. Functional analysis revealed roles in lipid metabolism and immune modulation, with ssGSEA highlighting correlations between key genes and immune cell infiltration. …"
-
124
Enrichment analysis of drugs and target genes.
منشور في 2025"…A diagnostic model based on these genes achieved an AUC of 0.929, demonstrating robust accuracy in distinguishing PCa from normal tissues. Functional analysis revealed roles in lipid metabolism and immune modulation, with ssGSEA highlighting correlations between key genes and immune cell infiltration. …"
-
125
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
منشور في 2025"…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …"
-
126
-
127
-
128
-
129
-
130
S1 Graphical abstract -
منشور في 2025"…<div><p>Engineered heart tissues (EHTs) have shown great potential in recapitulating tissue organization, functions, and cell-cell interactions of the human heart <i>in vitro</i>. …"
-
131
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…"
-
132
-
133
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
منشور في 2025"…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…"
-
134
Table 4_Integrated cytomembrane proteomics identifies EpCAM/MGST1 as therapeutic targets in metastatic laryngeal carcinoma.xlsx
منشور في 2025"…Potential immunotherapy targets were identified and prioritized using an in silico screening algorithm for cytomembrane proteome.</p>Results<p>The in silico screening algorithm for cytomembrane proteome led to the recognition of EpCAM and MGST1 as potential targets. …"
-
135
Table 5_Integrated cytomembrane proteomics identifies EpCAM/MGST1 as therapeutic targets in metastatic laryngeal carcinoma.xlsx
منشور في 2025"…Potential immunotherapy targets were identified and prioritized using an in silico screening algorithm for cytomembrane proteome.</p>Results<p>The in silico screening algorithm for cytomembrane proteome led to the recognition of EpCAM and MGST1 as potential targets. …"
-
136
Table 2_Integrated cytomembrane proteomics identifies EpCAM/MGST1 as therapeutic targets in metastatic laryngeal carcinoma.docx
منشور في 2025"…Potential immunotherapy targets were identified and prioritized using an in silico screening algorithm for cytomembrane proteome.</p>Results<p>The in silico screening algorithm for cytomembrane proteome led to the recognition of EpCAM and MGST1 as potential targets. …"
-
137
Table 6_Integrated cytomembrane proteomics identifies EpCAM/MGST1 as therapeutic targets in metastatic laryngeal carcinoma.xlsx
منشور في 2025"…Potential immunotherapy targets were identified and prioritized using an in silico screening algorithm for cytomembrane proteome.</p>Results<p>The in silico screening algorithm for cytomembrane proteome led to the recognition of EpCAM and MGST1 as potential targets. …"
-
138
Table 1_Integrated cytomembrane proteomics identifies EpCAM/MGST1 as therapeutic targets in metastatic laryngeal carcinoma.docx
منشور في 2025"…Potential immunotherapy targets were identified and prioritized using an in silico screening algorithm for cytomembrane proteome.</p>Results<p>The in silico screening algorithm for cytomembrane proteome led to the recognition of EpCAM and MGST1 as potential targets. …"
-
139
Table 3_Integrated cytomembrane proteomics identifies EpCAM/MGST1 as therapeutic targets in metastatic laryngeal carcinoma.xlsx
منشور في 2025"…Potential immunotherapy targets were identified and prioritized using an in silico screening algorithm for cytomembrane proteome.</p>Results<p>The in silico screening algorithm for cytomembrane proteome led to the recognition of EpCAM and MGST1 as potential targets. …"
-
140
NanoDB: Research Activity Data Management System
منشور في 2024"…Cross-Platform Compatibility: Works on Windows, macOS, and Linux. In a Python environment or as an executable. Ease of Implementation: Using the flexibility of the Python framework all the data setup and algorithm can me modified and new functions can be easily added. …"