Showing 161 - 180 results of 185 for search '(( algorithm catenin function ) OR ((( algorithm python function ) OR ( algorithm pca function ))))', query time: 0.41s Refine Results
  1. 161

    CSPP instance by peixiang wang (19499344)

    Published 2025
    “…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…”
  2. 162

    Image 1_Single-cell and multi-omics analysis reveals the role of stem cells in prognosis and immunotherapy of lung adenocarcinoma patients.tif by Jianan Zheng (9134099)

    Published 2025
    “…Multiple machine learning algorithms were systematically compared in order to develop an optimal prognostic model. …”
  3. 163

    Image 2_Single-cell and multi-omics analysis reveals the role of stem cells in prognosis and immunotherapy of lung adenocarcinoma patients.tif by Jianan Zheng (9134099)

    Published 2025
    “…Multiple machine learning algorithms were systematically compared in order to develop an optimal prognostic model. …”
  4. 164

    Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100) by peng xin (21382394)

    Published 2025
    “…Bias correction was conducted using a 25-year baseline (1990–2014), with adjustments made monthly to correct for seasonal biases. The corrected bias functions were then applied to adjust the years (2020–2100) of daily rainfall data using the "ibicus" package, an open-source Python tool for bias adjustment and climate model evaluation. …”
  5. 165

    Code by Baoqiang Chen (21099509)

    Published 2025
    “…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
  6. 166

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
  7. 167

    Landscape17 by Vlad Carare (22092515)

    Published 2025
    “…</p><p dir="ltr">We utilized TopSearch, an open-source Python package, to perform landscape exploration, at an estimated cost of 10<sup>5 </sup>CPUh. …”
  8. 168

    MCCN Case Study 2 - Spatial projection via modelled data by Donald Hobern (21435904)

    Published 2025
    “…This study demonstrates: 1) Description of spatial assets using STAC, 2) Loading heterogeneous data sources into a cube, 3) Spatial projection in xarray using different algorithms offered by the <a href="https://pypi.org/project/PyKrige/" rel="nofollow" target="_blank">pykrige</a> and <a href="https://pypi.org/project/rioxarray/" rel="nofollow" target="_blank">rioxarray</a> packages.…”
  9. 169

    Data Sheet 1_Machine learning models integrating intracranial artery calcification to predict outcomes of mechanical thrombectomy.pdf by Guangzong Li (16696443)

    Published 2025
    “…Eleven ML algorithms were trained and validated using Python, and external validation and performance evaluations were conducted. …”
  10. 170

    Image 3_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  11. 171

    Table 3_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  12. 172

    Table 8_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  13. 173

    Table 2_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  14. 174

    Table 1_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  15. 175

    Image 2_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  16. 176

    Table 6_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  17. 177

    Table 5_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  18. 178

    Image 5_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  19. 179

    Image 1_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tiff by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  20. 180

    Table 7_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”