Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm cells » algorithm could (Expand Search), algorithm cl (Expand Search), algorithm models (Expand Search)
python function » protein function (Expand Search)
cells function » cell function (Expand Search), cell functions (Expand Search), genes function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » fc function (Expand Search), spc function (Expand Search), npc function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm cells » algorithm could (Expand Search), algorithm cl (Expand Search), algorithm models (Expand Search)
python function » protein function (Expand Search)
cells function » cell function (Expand Search), cell functions (Expand Search), genes function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » fc function (Expand Search), spc function (Expand Search), npc function (Expand Search)
-
1
Sudoku Dataset
Published 2024“…(I.e., a label of 1 means the target cell should be a 2.)</p> <p>NumPy (.npy) files can be opened through the NumPy Python library, using the `numpy.load()` function by inputting the path to the file into the function as a parameter. …”
-
2
GameOfLife Prediction Dataset
Published 2025“…</p><p dir="ltr">The goal of this dataset is to predict the number of cells alive in the next generation. This task is relatively simple for a human to do if a bit tedious, and should theoretically be simple for Machine Learning algorithms. …”
-
3
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
Published 2025“…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…”
-
4
Expression vs genomics for predicting dependencies
Published 2024“…</p><p dir="ltr"><br></p><p dir="ltr">PerturbationInfo.csv: Additional drug annotations for the PRISM and GDSC17 datasets</p><p dir="ltr"><br></p><p dir="ltr">ApproximateCFE.hdf5: A set of Cancer Functional Event cell features based on CCLE data, adapted from Iorio et al. 2016 (10.1016/j.cell.2016.06.017)</p><p dir="ltr"><br></p><p dir="ltr">DepMapSampleInfo.csv: sample info from DepMap_public_19Q4 data, reproduced here as a convenience.…”