يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '(( algorithm could function ) OR ( algorithm cl function ))~', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 1
  2. 2

    Data-Driven Design of High-Performance Graphene-Based Seawater Desalination Membranes حسب Kun Meng (141278)

    منشور في 2023
    "…A high-throughput screening involving density functional theory–machine learning (DFT-ML) framework is considered to be an essential avenue to tackle this dilemma. …"
  3. 3

    Data-Driven Design of High-Performance Graphene-Based Seawater Desalination Membranes حسب Kun Meng (141278)

    منشور في 2023
    "…A high-throughput screening involving density functional theory–machine learning (DFT-ML) framework is considered to be an essential avenue to tackle this dilemma. …"
  4. 4

    DataSheet1_A novel 7-chemokine-genes predictive signature for prognosis and therapeutic response in renal clear cell carcinoma.PDF حسب Ming-Jie Lin (14813353)

    منشور في 2023
    "…Utilizing the LASSO algorithm in conjunction with univariate Cox analysis, the gene signature was constructed. …"
  5. 5

    Inflammation-Associated Stromal Reprogramming Can Initiate Metaplasia and Facilitate Dysplastic Progression via ECM حسب Deng Pan (47215)

    منشور في 2024
    "…_csr.csr_matrix<br>X.dtype == 'float32'</p><p><br></p><p dir="ltr">AnnData.obs<br>===========</p><p dir="ltr">index - cell barcodes + sample_diagnosis<br>samplename - coded sample ID<br>n_genes - number of measured genes in the cell<br>n_molecules - number of molecules sequenced<br>doublet_score - whether the droplet contained two cells (scrublet)<br>percent_mito - percent of genes measured that are mitochondrial<br>leiden - cluster labels from leiden algorithm<br>louvain - cluster labels from the louvain algorithm<br>nobatch_leiden - non-batch corrected leiden cluster labels<br>nobatch_louvain - non-batch corrected louvain cluster labels<br>diagnosis - tissue diagnosis, N normal, M metaplasia, D dysplasia, T tumor<br>phase - cell cycle phase<br>sample_diagnosis - sample ID + tissue diagnosis<br>patient - patient ID<br>treatment - whether the patient recieved any treatment<br>procedure - how the sample was aquired<br>hcl_refined - human cell landscape refined cell type name<br>hcl_celltype - human cell landscape cell type best match<br>hcl_score - human cell landscape matching score<br>CLid - cell ontology ID<br>CL_name - cell ontology cell type name</p><p><br></p><p dir="ltr"><br></p><p dir="ltr">AnnData.var<br>===========</p><p dir="ltr">index - gene symbols<br>gene_ids - ensembl gene IDs<br>feature_types - type of the feature<br>genome - genome build<br>is_mito - whether the gene is mitochondrial<br>is_ribo - whether the gene is ribosomal</p><p dir="ltr"><br></p><p dir="ltr">AnnData_embeddings:<br>========================</p><p dir="ltr">PCA (obsm.X_pca)<br>UMAP (obsm.X_umap)<br>PCA_nobatch (obsm.X_pca_original)<br>UMAP_nobatch (obsm.X_umap_nobatch)<br>neighbors (AnnData.uns)</p><p dir="ltr"><br></p><p><br></p><p dir="ltr">Marker Genes:<br>=============<br>AnnData.uns['rank_genes_groups_filtered'].keys()</p><p dir="ltr">names - one list per leiden cluster<br>logfoldchanges - one cluster vs all others</p><p dir="ltr">scores - wilcoxon statistic<br>pvals - wilcoxon p-value</p><p dir="ltr">pvals_adj - BH adjusted p-values</p><p dir="ltr">params = {'corr_method': 'benjamini-hochberg', <br>'groupby': 'leiden',<br>'method': 'wilcoxon',<br>'reference': 'rest',<br>'use_raw': True}</p><p dir="ltr"><br></p>…"