بدائل البحث:
algorithm could » algorithm models (توسيع البحث)
could function » cell function (توسيع البحث), cells function (توسيع البحث)
algorithm cl » algorithm co (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
cl function » l function (توسيع البحث), cell function (توسيع البحث), cep function (توسيع البحث)
algorithm could » algorithm models (توسيع البحث)
could function » cell function (توسيع البحث), cells function (توسيع البحث)
algorithm cl » algorithm co (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
cl function » l function (توسيع البحث), cell function (توسيع البحث), cep function (توسيع البحث)
-
1
-
2
Data-Driven Design of High-Performance Graphene-Based Seawater Desalination Membranes
منشور في 2023"…A high-throughput screening involving density functional theory–machine learning (DFT-ML) framework is considered to be an essential avenue to tackle this dilemma. …"
-
3
Data-Driven Design of High-Performance Graphene-Based Seawater Desalination Membranes
منشور في 2023"…A high-throughput screening involving density functional theory–machine learning (DFT-ML) framework is considered to be an essential avenue to tackle this dilemma. …"
-
4
DataSheet1_A novel 7-chemokine-genes predictive signature for prognosis and therapeutic response in renal clear cell carcinoma.PDF
منشور في 2023"…Utilizing the LASSO algorithm in conjunction with univariate Cox analysis, the gene signature was constructed. …"
-
5
Inflammation-Associated Stromal Reprogramming Can Initiate Metaplasia and Facilitate Dysplastic Progression via ECM
منشور في 2024"…_csr.csr_matrix<br>X.dtype == 'float32'</p><p><br></p><p dir="ltr">AnnData.obs<br>===========</p><p dir="ltr">index - cell barcodes + sample_diagnosis<br>samplename - coded sample ID<br>n_genes - number of measured genes in the cell<br>n_molecules - number of molecules sequenced<br>doublet_score - whether the droplet contained two cells (scrublet)<br>percent_mito - percent of genes measured that are mitochondrial<br>leiden - cluster labels from leiden algorithm<br>louvain - cluster labels from the louvain algorithm<br>nobatch_leiden - non-batch corrected leiden cluster labels<br>nobatch_louvain - non-batch corrected louvain cluster labels<br>diagnosis - tissue diagnosis, N normal, M metaplasia, D dysplasia, T tumor<br>phase - cell cycle phase<br>sample_diagnosis - sample ID + tissue diagnosis<br>patient - patient ID<br>treatment - whether the patient recieved any treatment<br>procedure - how the sample was aquired<br>hcl_refined - human cell landscape refined cell type name<br>hcl_celltype - human cell landscape cell type best match<br>hcl_score - human cell landscape matching score<br>CLid - cell ontology ID<br>CL_name - cell ontology cell type name</p><p><br></p><p dir="ltr"><br></p><p dir="ltr">AnnData.var<br>===========</p><p dir="ltr">index - gene symbols<br>gene_ids - ensembl gene IDs<br>feature_types - type of the feature<br>genome - genome build<br>is_mito - whether the gene is mitochondrial<br>is_ribo - whether the gene is ribosomal</p><p dir="ltr"><br></p><p dir="ltr">AnnData_embeddings:<br>========================</p><p dir="ltr">PCA (obsm.X_pca)<br>UMAP (obsm.X_umap)<br>PCA_nobatch (obsm.X_pca_original)<br>UMAP_nobatch (obsm.X_umap_nobatch)<br>neighbors (AnnData.uns)</p><p dir="ltr"><br></p><p><br></p><p dir="ltr">Marker Genes:<br>=============<br>AnnData.uns['rank_genes_groups_filtered'].keys()</p><p dir="ltr">names - one list per leiden cluster<br>logfoldchanges - one cluster vs all others</p><p dir="ltr">scores - wilcoxon statistic<br>pvals - wilcoxon p-value</p><p dir="ltr">pvals_adj - BH adjusted p-values</p><p dir="ltr">params = {'corr_method': 'benjamini-hochberg', <br>'groupby': 'leiden',<br>'method': 'wilcoxon',<br>'reference': 'rest',<br>'use_raw': True}</p><p dir="ltr"><br></p>…"