بدائل البحث:
design evaluation » drug evaluation (توسيع البحث)
algorithm design » algorithm using (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm a » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithms _ (توسيع البحث)
a function » _ function (توسيع البحث)
design evaluation » drug evaluation (توسيع البحث)
algorithm design » algorithm using (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm a » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithms _ (توسيع البحث)
a function » _ function (توسيع البحث)
-
161
-
162
-
163
-
164
-
165
-
166
-
167
-
168
-
169
-
170
Combining Deep Learning Neural Networks with Genetic Algorithms to Map Nanocluster Configuration Spaces with Quantum Accuracy at Low Computational Cost
منشور في 2023"…Results focus primarily on evaluating the algorithm’s performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability.…"
-
171
Green Design Evaluation of Electrical and Electronic Equipment Based on Knowledge Graph
منشور في 2023الموضوعات: -
172
Experiment 1a: Setting the default value for t in FastEnsemble.
منشور في 2025"…Left: Accuracy as a function of the model mixing parameter (x-axis). …"
-
173
-
174
-
175
-
176
Comparison of scores obtained by our interpenetration and scoring algorithm (ISA) and ROSETTA for a subset of structures.
منشور في 2023"…However, our algorithm was 1000 times faster than pyROSETTA (both algorithms have been parallelized on a per-structure basis using the Python package joblib [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1010531#pcbi.1010531.ref069" target="_blank">69</a>]).…"
-
177
<i>De Novo</i> Design of Molecules with Low Hole Reorganization Energy Based on a Quarter-Million Molecule DFT Screen: Part 2
منشور في 2022"…The four generative methods evaluated here are (1) Molecule Deep Q-Networks (MolDQN), which utilizes Deep-Q learning to directly optimize molecular structure graphs for desired properties instead of generating SMILES, (2) Graph-based Genetic Algorithm (GraphGA), which uses a genetic algorithm for optimization where crossovers and mutations are defined in terms of RDKit’s reaction SMILES, (3) Generative Tensorial Reinforcement Learning (GENTRL), which is a variational autoencoder (VAE) with a learned prior distribution and optimized using reinforcement learning, and (4) Monte Carlo tree search exploration of chemical space in conjunction with a recurrent neural network (RNN) decoder (ChemTS). …"
-
178
<i>OptRAM</i>: <i>In-silico</i> strain design via integrative regulatory-metabolic network modeling
منشور في 2019"…Moreover previous integrated approaches generally require a pre-existing regulatory network. In this study, we developed a novel strain design algorithm, named OptRAM (<b>Opt</b>imization of <b>R</b>egulatory <b>A</b>nd <b>M</b>etabolic Networks), which can identify combinatorial optimization strategies including overexpression, knockdown or knockout of both metabolic genes and transcription factors. …"
-
179
-
180
Image of the ReLU function.
منشور في 2025"…First, a novel backbone network was designed by incorporating new convolutional layers and the Simplified Spatial Pyramid Pooling - Fast (SimSPPF) module to strengthen feature extraction. …"