Search alternatives:
algorithm which » algorithm where (Expand Search), algorithm within (Expand Search)
which function » beach function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
algorithm which » algorithm where (Expand Search), algorithm within (Expand Search)
which function » beach function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
DataSheet1_The evolution of flexibility and function in the Fc domains of IgM, IgY, and IgE.pdf
Published 2024“…This permits additional flexibility within the Fc region, which has been exploited by nature to modulate antibody effector functions. …”
-
10
-
11
-
12
Data of PV, WT, FC, and utilized coefficients.
Published 2024“…A day-ahead scheduling model is proposed for optimal energy management (EM) of the μG investigated, which comprises photovoltaics (PVs), fuel cells (FCs), wind turbines (WTs), BSSs, and EV charging stations, with shed light on the viability and benefits of connecting BSS with EV charging stations in the μG. …”
-
13
-
14
RMSE results.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
15
Results of the Kherson Area Visual Assessment.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
16
Work flow chart.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
17
Experimental data.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
18
Results of the PY area visual assessment.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
19
-
20