Search alternatives:
algorithm fibrin » algorithm within (Expand Search), algorithms within (Expand Search), algorithm from (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
fibrin function » brain function (Expand Search)
python function » protein function (Expand Search)
algorithm a » algorithms a (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
a function » _ function (Expand Search)
algorithm fibrin » algorithm within (Expand Search), algorithms within (Expand Search), algorithm from (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
fibrin function » brain function (Expand Search)
python function » protein function (Expand Search)
algorithm a » algorithms a (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
a function » _ function (Expand Search)
-
1701
Optimized fuzzy rules illustration.
Published 2025“…The prediction process uses a large volume of information to identify the details of resources and operational performance in industrial applications. …”
-
1702
FuzzyMath excellence analysis.
Published 2025“…The prediction process uses a large volume of information to identify the details of resources and operational performance in industrial applications. …”
-
1703
Summary of related studies.
Published 2025“…The prediction process uses a large volume of information to identify the details of resources and operational performance in industrial applications. …”
-
1704
Defuzzification Output related to .
Published 2025“…The prediction process uses a large volume of information to identify the details of resources and operational performance in industrial applications. …”
-
1705
Contribution of aggregated rules in .
Published 2025“…The prediction process uses a large volume of information to identify the details of resources and operational performance in industrial applications. …”
-
1706
Relationship analysis between .
Published 2025“…The prediction process uses a large volume of information to identify the details of resources and operational performance in industrial applications. …”
-
1707
List of generated rules.
Published 2025“…The prediction process uses a large volume of information to identify the details of resources and operational performance in industrial applications. …”
-
1708
Image 1_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1709
Image 3_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1710
Image 10_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1711
Image 4_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1712
Image 8_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1713
Image 2_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1714
Image 9_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1715
Image 6_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1716
Image 7_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1717
Image 5_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
Published 2025“…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
-
1718
Image 7_Segmentation of tobacco shred point cloud and 3-D measurement based on improved PointNet++ network with DTC algorithm.png
Published 2025“…This model combines the weighted cross-entropy loss function to enhance the classification effect, the cosine annealing algorithm to optimize the training process, and the improved k-nearest neighbors multi-scale grouping method to enhance the model’s ability to segment the point cloud with complex morphology. …”
-
1719
Image 2_Segmentation of tobacco shred point cloud and 3-D measurement based on improved PointNet++ network with DTC algorithm.png
Published 2025“…This model combines the weighted cross-entropy loss function to enhance the classification effect, the cosine annealing algorithm to optimize the training process, and the improved k-nearest neighbors multi-scale grouping method to enhance the model’s ability to segment the point cloud with complex morphology. …”
-
1720
Table 1_Segmentation of tobacco shred point cloud and 3-D measurement based on improved PointNet++ network with DTC algorithm.docx
Published 2025“…This model combines the weighted cross-entropy loss function to enhance the classification effect, the cosine annealing algorithm to optimize the training process, and the improved k-nearest neighbors multi-scale grouping method to enhance the model’s ability to segment the point cloud with complex morphology. …”