Showing 201 - 220 results of 600 for search '(( algorithm fibrin function ) OR ((( algorithm python function ) OR ( algorithm co function ))))', query time: 0.41s Refine Results
  1. 201
  2. 202
  3. 203
  4. 204
  5. 205

    Table 5_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  6. 206

    Table 8_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  7. 207

    Table 7_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  8. 208

    Table 4_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  9. 209

    Table 6_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  10. 210

    Table 3_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  11. 211

    Table 2_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  12. 212

    Table 1_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  13. 213
  14. 214
  15. 215
  16. 216
  17. 217
  18. 218

    Table 1_Exploring potential therapeutic targets for small cell lung cancer based on transcriptomics combined with Mendelian randomization analysis.xlsx by Zhicheng Liao (18193337)

    Published 2025
    “…Based on expression quantitative trait loci data and the genome-wide association study data of SCLC, MR analysis was used to screen the genes closely related to SCLC disease, which intersect with DEGs to obtain co-expressed genes (CEGs), and the biological functions and pathways of CEGs were further explored by enrichment analysis. …”
  19. 219

    Image 2_Exploring potential therapeutic targets for small cell lung cancer based on transcriptomics combined with Mendelian randomization analysis.pdf by Zhicheng Liao (18193337)

    Published 2025
    “…Based on expression quantitative trait loci data and the genome-wide association study data of SCLC, MR analysis was used to screen the genes closely related to SCLC disease, which intersect with DEGs to obtain co-expressed genes (CEGs), and the biological functions and pathways of CEGs were further explored by enrichment analysis. …”
  20. 220

    Image 1_Exploring potential therapeutic targets for small cell lung cancer based on transcriptomics combined with Mendelian randomization analysis.pdf by Zhicheng Liao (18193337)

    Published 2025
    “…Based on expression quantitative trait loci data and the genome-wide association study data of SCLC, MR analysis was used to screen the genes closely related to SCLC disease, which intersect with DEGs to obtain co-expressed genes (CEGs), and the biological functions and pathways of CEGs were further explored by enrichment analysis. …”