بدائل البحث:
algorithm fibrin » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm from (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
fibrin function » brain function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm fc » algorithm etc (توسيع البحث), algorithm pca (توسيع البحث), algorithms mc (توسيع البحث)
fc function » spc function (توسيع البحث), _ function (توسيع البحث), a function (توسيع البحث)
algorithm fibrin » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm from (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
fibrin function » brain function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm fc » algorithm etc (توسيع البحث), algorithm pca (توسيع البحث), algorithms mc (توسيع البحث)
fc function » spc function (توسيع البحث), _ function (توسيع البحث), a function (توسيع البحث)
-
141
Data Sheet 2_Multi-omics exploration of chaperone-mediated immune-proteostasis crosstalk in vascular dementia and identification of diagnostic biomarkers.xlsx
منشور في 2025"…Differentially expressed genes (DEGs) were identified using the limma package (log2FC>0.656, p<0.05). Protein-protein interaction (PPI) networks were constructed using the STRING database. …"
-
142
Data Sheet 3_Multi-omics exploration of chaperone-mediated immune-proteostasis crosstalk in vascular dementia and identification of diagnostic biomarkers.xlsx
منشور في 2025"…Differentially expressed genes (DEGs) were identified using the limma package (log2FC>0.656, p<0.05). Protein-protein interaction (PPI) networks were constructed using the STRING database. …"
-
143
Data Sheet 4_Multi-omics exploration of chaperone-mediated immune-proteostasis crosstalk in vascular dementia and identification of diagnostic biomarkers.xlsx
منشور في 2025"…Differentially expressed genes (DEGs) were identified using the limma package (log2FC>0.656, p<0.05). Protein-protein interaction (PPI) networks were constructed using the STRING database. …"
-
144
Raw LC-MS/MS and RNA-Seq Mitochondria data
منشور في 2025"…Differentially altered pathways were evaluated by using the enrich plot package in R for visualization of functional enrichment (i.e., dot plot).</p>…"
-
145
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"