بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm i » algorithm ai (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), link function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm i » algorithm ai (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), link function (توسيع البحث)
-
81
-
82
-
83
-
84
EITO<sub><i>P</i></sub> with a variable trip time.
منشور في 2025"…On the basis of EITO<sub>E</sub>, we propose EITO<sub>P</sub> algorithm using the PPO algorithm to optimize multiple objectives by designing reinforcement learning strategies, rewards, and value functions. …"
-
85
Functions in nhppp.
منشور في 2024"…We developed it to facilitate the sampling of event times in discrete event and statistical simulations. The package’s functions are based on three algorithms that provably sample from a target NHPPP: the time-transformation of a homogeneous Poisson process (of intensity one) via the inverse of the integrated intensity function; the generation of a Poisson number of order statistics from a fixed density function; and the thinning of a majorizing NHPPP via an acceptance-rejection scheme. …"
-
86
-
87
-
88
-
89
Metapopulation model notation.
منشور في 2025"…We provide a theoretical explanation for this effectiveness by showing that the approximation factor (a measure of how well the algorithmic output for a problem instance compares to its theoretical optimum) of these algorithms depends on the <i>submodularity ratio</i> of the objective function <i>g</i>. …"
-
90
Estimates of for each problem instance.
منشور في 2025"…We provide a theoretical explanation for this effectiveness by showing that the approximation factor (a measure of how well the algorithmic output for a problem instance compares to its theoretical optimum) of these algorithms depends on the <i>submodularity ratio</i> of the objective function <i>g</i>. …"
-
91
Approximation factors for each problem instance.
منشور في 2025"…We provide a theoretical explanation for this effectiveness by showing that the approximation factor (a measure of how well the algorithmic output for a problem instance compares to its theoretical optimum) of these algorithms depends on the <i>submodularity ratio</i> of the objective function <i>g</i>. …"
-
92
-
93
-
94
-
95
The run time for each algorithm in seconds.
منشور في 2025"…<div><p>In this paper, we study a class of non-parametric regression models for predicting graph signals as a function of explanatory variables . Recently, Kernel Graph Regression (KGR) and Gaussian Processes over Graph (GPoG) have emerged as promising techniques for this task. …"
-
96
Effectiveness of RWOA and other SOTA algorithms.
منشور في 2025"…<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. …"
-
97
-
98
Greedy Man Optimization Algorithm (GMOA)
منشور في 2025"…By balancing exploration and exploitation dynamically, GMOA effectively navigates complex, multimodal search spaces, making it highly robust against local optima. This algorithm has been successfully applied to various benchmark functions and can handle constrained and unconstrained optimization problems. …"
-
99
-
100