يعرض 261 - 280 نتائج من 2,693 نتيجة بحث عن '(( algorithm from function ) OR ( ((algorithm python) OR (algorithm flow)) function ))*', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 261
  2. 262
  3. 263
  4. 264
  5. 265
  6. 266
  7. 267
  8. 268

    Optimization outcome for the Rosenbrock function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  9. 269

    Optimization outcome for the Rastrigin function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  10. 270

    2D Rastrigin function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  11. 271

    2D Levy function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  12. 272

    2D Rosenbrock function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  13. 273

    Optimization outcome for the Levy function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  14. 274

    Details of the metaheuristic algorithms. حسب Junhao Wei (6816803)

    منشور في 2025
    "…<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. …"
  15. 275

    Parameter settings for algorithms. حسب Junhao Wei (6816803)

    منشور في 2025
    "…<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. …"
  16. 276

    Exponentially attenuated sinusoidal function. حسب Hang Zhao (143592)

    منشور في 2025
    "…The Pareto optimal front was generated using MOCOA with the indicators of spectral kurtosis and KL divergence, by which the optimal intrinsic mode functions were obtained. A deep VMD-attention network based on MOCOA was developed for ECG signal classification. …"
  17. 277
  18. 278

    LBQANA python code + Merged Gene Expression Dataset from GSE10810, GSE17907, GSE20711, GSE42568, GSE45827, and GSE61304 for Breast Cancer Biomarker Discovery حسب M RN (9866504)

    منشور في 2025
    "…To address batch effects introduced during the merging process, the Empirical Bayes algorithm from the sva package (via the ComBat function) was applied. …"
  19. 279

    PATH has state-of-the-art performance versus previous binding affinity prediction algorithms. حسب Yuxi Long (11024307)

    منشور في 2025
    "…<p><sup><b>a</b></sup>PATH<sup>+</sup> shows comparable or better performance with less overfitting, as evidenced by a smaller slope, with much less increase in RMSEs beyond the training dataset, compared to established binding affinity prediction algorithms spanning a variety of methods. The benchmarked algorithms include physics-based and deep learning algorithms from the famous AutoDock framework (scoring function of AutoDock4 implemented in the AutoDockFR package [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref068" target="_blank">68</a>,<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref077" target="_blank">77</a>], Vinardo [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref069" target="_blank">69</a>], GNINA [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref070" target="_blank">70</a>]), empirical (AA-Score [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref071" target="_blank">71</a>]), knowledge-based (SMoG2016 [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref072" target="_blank">72</a>]), and deep learning-based scoring functions (OnionNet [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref073" target="_blank">73</a>], PLANET [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref074" target="_blank">74</a>]). …"
  20. 280