بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
-
261
-
262
-
263
-
264
-
265
-
266
-
267
-
268
Optimization outcome for the Rosenbrock function.
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
269
Optimization outcome for the Rastrigin function.
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
270
2D Rastrigin function.
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
271
2D Levy function.
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
272
2D Rosenbrock function.
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
273
Optimization outcome for the Levy function.
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
274
Details of the metaheuristic algorithms.
منشور في 2025"…<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. …"
-
275
Parameter settings for algorithms.
منشور في 2025"…<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. …"
-
276
Exponentially attenuated sinusoidal function.
منشور في 2025"…The Pareto optimal front was generated using MOCOA with the indicators of spectral kurtosis and KL divergence, by which the optimal intrinsic mode functions were obtained. A deep VMD-attention network based on MOCOA was developed for ECG signal classification. …"
-
277
-
278
LBQANA python code + Merged Gene Expression Dataset from GSE10810, GSE17907, GSE20711, GSE42568, GSE45827, and GSE61304 for Breast Cancer Biomarker Discovery
منشور في 2025"…To address batch effects introduced during the merging process, the Empirical Bayes algorithm from the sva package (via the ComBat function) was applied. …"
-
279
PATH has state-of-the-art performance versus previous binding affinity prediction algorithms.
منشور في 2025"…<p><sup><b>a</b></sup>PATH<sup>+</sup> shows comparable or better performance with less overfitting, as evidenced by a smaller slope, with much less increase in RMSEs beyond the training dataset, compared to established binding affinity prediction algorithms spanning a variety of methods. The benchmarked algorithms include physics-based and deep learning algorithms from the famous AutoDock framework (scoring function of AutoDock4 implemented in the AutoDockFR package [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref068" target="_blank">68</a>,<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref077" target="_blank">77</a>], Vinardo [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref069" target="_blank">69</a>], GNINA [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref070" target="_blank">70</a>]), empirical (AA-Score [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref071" target="_blank">71</a>]), knowledge-based (SMoG2016 [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref072" target="_blank">72</a>]), and deep learning-based scoring functions (OnionNet [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref073" target="_blank">73</a>], PLANET [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref074" target="_blank">74</a>]). …"
-
280