Search alternatives:
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
algorithm from » algorithm flow (Expand Search)
from function » from functional (Expand Search), fc function (Expand Search)
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
algorithm from » algorithm flow (Expand Search)
from function » from functional (Expand Search), fc function (Expand Search)
-
1
-
2
Efficient Algorithms for GPU Accelerated Evaluation of the DFT Exchange-Correlation Functional
Published 2025“…Improving algorithmic efficiency through hardware-aware implementations enables application to larger systems and more efficient generation of larger training data sets for machine-learning. …”
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
Multimodal reference functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
14
The convergence curves of the test functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
15
Single-peaked reference functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
16
Test results of multimodal benchmark functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
17
Fixed-dimensional multimodal reference functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
18
Test results of multimodal benchmark functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
19
-
20