Showing 1 - 20 results of 3,190 for search '(( algorithm from function ) OR ( algorithm machine function ))', query time: 0.26s Refine Results
  1. 1
  2. 2

    Efficient Algorithms for GPU Accelerated Evaluation of the DFT Exchange-Correlation Functional by Ryan Stocks (16867476)

    Published 2025
    “…Improving algorithmic efficiency through hardware-aware implementations enables application to larger systems and more efficient generation of larger training data sets for machine-learning. …”
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Multimodal reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  14. 14

    The convergence curves of the test functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  15. 15

    Single-peaked reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  16. 16

    Test results of multimodal benchmark functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  17. 17

    Fixed-dimensional multimodal reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  18. 18

    Test results of multimodal benchmark functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  19. 19
  20. 20