Search alternatives:
algorithm harding » algorithm using (Expand Search), algorithm machine (Expand Search), algorithm showing (Expand Search)
harding function » hardening function (Expand Search), hearing functions (Expand Search), varying functions (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
algorithm harding » algorithm using (Expand Search), algorithm machine (Expand Search), algorithm showing (Expand Search)
harding function » hardening function (Expand Search), hearing functions (Expand Search), varying functions (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
-
21
The pseudocode for the NAFPSO algorithm.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
22
PSO algorithm flowchart.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
23
-
24
-
25
Comparison of different algorithms.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
26
-
27
-
28
Study proposed algorithm.
Published 2025“…The index of microvascular resistance (IMR) is a specific physiological parameter used to assess microvascular function. Invasive coronary assessment has been shown to be both feasible and safe. …”
-
29
Gillespie algorithm simulation parameters.
Published 2024“…Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. …”
-
30
Scheduling time of five algorithms.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
31
Convergence speed of five algorithms.
Published 2025“…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
-
32
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
Published 2025“…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …”
-
33
A Genetic Algorithm Approach for Compact Wave Function Representations in Spin-Adapted Bases
Published 2025“…Crucially, we propose fitness functions based on approximate measures of the wave function compactness, which enable inexpensive genetic algorithm searches. …”
-
34
Overnight technician routing and scheduling problem with time windows and balanced workloads: a bi-objective zebra optimization algorithm
Published 2025“…</p> <p><b>Highlights</b></p><p>An ML-based bi-objective zebra optimisation algorithm to treat large-scale TRSPs</p><p>Centroid-based clustering on the population of zebras to avoid bias towards a specific search space</p><p>Making a trade-off between exploration and exploitation of the feasible region in the developed algorithm</p><p>A new MINLP model of a weighted bi-objective TRSP with limited capacity depots</p><p>Workload function, penalty function for lateness, subcontracts, time windows for tasks and breaks</p><p>Experiments using real data to show the performance of the model and solution method</p><p></p> <p>An ML-based bi-objective zebra optimisation algorithm to treat large-scale TRSPs</p> <p>Centroid-based clustering on the population of zebras to avoid bias towards a specific search space</p> <p>Making a trade-off between exploration and exploitation of the feasible region in the developed algorithm</p> <p>A new MINLP model of a weighted bi-objective TRSP with limited capacity depots</p> <p>Workload function, penalty function for lateness, subcontracts, time windows for tasks and breaks</p> <p>Experiments using real data to show the performance of the model and solution method</p>…”
-
35
Multi-algorithm comparison figure.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
36
CEC2017 basic functions.
Published 2025“…During experimental evaluation, the efficiency of OP-ZOA was verified using the CEC2017 test functions, demonstrating superior performance compared to seven recently proposed meta-heuristic algorithms (Bloodsucking Leech Algorithm (BSLO), Parrot Optimization Algorithm (PO), Polar Lights Algorithm (PLO), Red-tailed Hawk Optimization Algorithm (RTH), Bitterling Fish Optimization Algorithm (BFO), Spider Wasp Optimization Algorithm (SWO) and Zebra Optimization Algorithm (ZOA)). …”
-
37
Both Ankle fNIRS MI dataset
Published 2025“…<p><br></p><p dir="ltr">This dataset contains functional near-infrared spectroscopy (fNIRS) signals recorded during motor imagery (MI) tasks of lower limb movements. …”
-
38
Both Knees fNIRS MI dataset
Published 2025“…<p><br></p><p dir="ltr">This dataset contains functional near-infrared spectroscopy (fNIRS) signals recorded during motor imagery (MI) tasks of lower limb movements. …”
-
39
-
40
Completion times for different algorithms.
Published 2025“…This paper first analyzes the H-beam processing flow and appropriately simplifies it, develops a reinforcement learning environment for multi-agent scheduling, and applies the rMAPPO algorithm to make scheduling decisions. The effectiveness of the proposed method is then verified on both the physical work cell for riveting and welding and its digital twin platform, and it is compared with other baseline multi-agent reinforcement learning methods (MAPPO, MADDPG, and MASAC). …”