يعرض 1 - 20 نتائج من 16,872 نتيجة بحث عن '(( algorithm i function ) OR ((( algorithm python function ) OR ( algorithms a function ))))', وقت الاستعلام: 1.09s تنقيح النتائج
  1. 1

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit حسب Gonzalo Colmenarejo (650249)

    منشور في 2025
    "…For a RDKit molecule, it provides (i) a PNG binary string with an image of the molecule with color-highlighted functional groups; (ii) a list of sets of atom indices (idx), each set corresponding to a functional group; (iii) a list of pseudo-SMILES canonicalized strings for the full functional groups; and (iv) a list of RDKit labeled mol objects, one for each full functional group. …"
  2. 2
  3. 3

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer حسب Morgan Najera (21540776)

    منشور في 2025
    "…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
  4. 4

    Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results حسب Se-Hee Jo (20554623)

    منشور في 2025
    "…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …"
  5. 5
  6. 6
  7. 7

    Results of the application of different clustering algorithms to average functional connectivity from healthy subjects. حسب Francisco Páscoa dos Santos (16510676)

    منشور في 2023
    "…<p>A) Resulting cluster inertia from applying the k-means algorithm described in the methods to empirical averaged functional connectivity from healthy subjects, with different numbers of clusters. …"
  8. 8

    An expectation-maximization algorithm for finding noninvadable stationary states. حسب Robert Marsland (8616483)

    منشور في 2020
    "…<i>(b)</i> Metabolic byproducts move the relevant unperturbed state from <b>R</b><sup>0</sup> (gray ‘x’) to (black ‘x’), which is itself a function of the current environmental conditions. …"
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    ADT: A Generalized Algorithm and Program for Beyond Born–Oppenheimer Equations of “<i>N</i>” Dimensional Sub-Hilbert Space حسب Koushik Naskar (7510592)

    منشور في 2020
    "…In order to overcome such shortcoming, we develop a generalized algorithm, “ADT” to generate the nonadiabatic equations through symbolic manipulation and to construct highly accurate diabatic surfaces for molecular processes involving excited electronic states. …"
  15. 15

    Search Algorithms and Loss Functions for Bayesian Clustering حسب David B. Dahl (11761055)

    منشور في 2022
    "…<p>We propose a randomized greedy search algorithm to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. …"
  16. 16

    <i>K</i>-CDFs: A Nonparametric Clustering Algorithm via Cumulative Distribution Function حسب Jicai Liu (11419050)

    منشور في 2022
    "…<p>We propose a novel partitioning clustering procedure based on the cumulative distribution function (CDF), called <i>K</i>-CDFs. …"
  17. 17
  18. 18
  19. 19
  20. 20