Showing 1 - 20 results of 12,907 for search '(( algorithm i function ) OR ( algorithm ((within function) OR (python function)) ))', query time: 0.51s Refine Results
  1. 1

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer by Morgan Najera (21540776)

    Published 2025
    “…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…”
  2. 2
  3. 3

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit by Gonzalo Colmenarejo (650249)

    Published 2025
    “…For a RDKit molecule, it provides (i) a PNG binary string with an image of the molecule with color-highlighted functional groups; (ii) a list of sets of atom indices (idx), each set corresponding to a functional group; (iii) a list of pseudo-SMILES canonicalized strings for the full functional groups; and (iv) a list of RDKit labeled mol objects, one for each full functional group. …”
  4. 4

    Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results by Se-Hee Jo (20554623)

    Published 2025
    “…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …”
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Route for bays29 output by ABSQL algorithm. by Jin Zhang (53297)

    Published 2023
    “…DSRABSQL builds upon the Q-learning (QL) algorithm. Considering its problems of slow convergence and low accuracy, four strategies within the QL framework are designed first: the weighting function-based reward matrix, the power function-based initial Q-table, a self-adaptive <i>ε-beam</i> search strategy, and a new Q-value update formula. …”
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Detailed information of benchmark functions. by Guangwei Liu (181992)

    Published 2024
    “…In Case 1, the GJO-GWO algorithm addressed eight complex benchmark functions. …”
  18. 18
  19. 19
  20. 20