Showing 1 - 20 results of 13,525 for search '(( algorithm i function ) OR ( algorithm machine function ))', query time: 0.78s Refine Results
  1. 1

    Convergence curves of the IMGO algorithm and comparison algorithms on functions <i>f</i>14−<i>f</i>23. by Ying Li (38224)

    Published 2024
    “…<p>Convergence curves of the IMGO algorithm and comparison algorithms on functions <i>f</i>14−<i>f</i>23.…”
  2. 2

    Convergence curves of the IMGO algorithm and comparison algorithms on functions <i>f</i>8−<i>f</i>13. by Ying Li (38224)

    Published 2024
    “…<p>Convergence curves of the IMGO algorithm and comparison algorithms on functions <i>f</i>8−<i>f</i>13.…”
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Convergence curves of the IMGO and comparison algorithms on functions <i>f</i>1−<i>f</i>7. by Ying Li (38224)

    Published 2024
    “…<p>Convergence curves of the IMGO and comparison algorithms on functions <i>f</i>1−<i>f</i>7.</p>…”
  8. 8

    Table_1_Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models.DOCX by Shakiru A. Alaka (9302864)

    Published 2020
    “…We evaluate the predictive accuracy of machine-learning algorithms for predicting functional outcomes in acute ischemic stroke patients after endovascular treatment.…”
  9. 9
  10. 10

    Data_Sheet_1_Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models.PDF by Shakiru A. Alaka (9302864)

    Published 2020
    “…We evaluate the predictive accuracy of machine-learning algorithms for predicting functional outcomes in acute ischemic stroke patients after endovascular treatment.…”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Algorithms for Sparse Support Vector Machines by Alfonso Landeros (798926)

    Published 2022
    “…The proximal distance principle takes a loss function <math><mrow><mi>L</mi><mo>(</mo><mi>β</mi><mo>)</mo></mrow></math> and adds the penalty <math><mrow><mi>ρ</mi><mn>2</mn>dist<mrow><mrow><mo>(</mo><mi>β</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mi>k</mi></msub><mo>)</mo></mrow></mrow><mn>2</mn></mrow></math> capturing the squared Euclidean distance of the parameter vector <math><mi>β</mi></math> to the sparsity set <i>S<sub>k</sub></i> where at most <i>k</i> components of <math><mi>β</mi></math> are nonzero. …”
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20