Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm its » algorithm i (Expand Search), algorithm etc (Expand Search), algorithm iqa (Expand Search)
its function » i function (Expand Search), loss function (Expand Search), cost function (Expand Search)
algorithm b » algorithm _ (Expand Search), algorithms _ (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm its » algorithm i (Expand Search), algorithm etc (Expand Search), algorithm iqa (Expand Search)
its function » i function (Expand Search), loss function (Expand Search), cost function (Expand Search)
algorithm b » algorithm _ (Expand Search), algorithms _ (Expand Search)
-
121
Self-Powered Tactile Sensor for Gesture Recognition Using Deep Learning Algorithms
Published 2022“…A multifunctional wearable tactile sensor assisted by deep learning algorithms is developed, which can realize the functions of gesture recognition and interaction. …”
-
122
Self-Powered Tactile Sensor for Gesture Recognition Using Deep Learning Algorithms
Published 2022“…A multifunctional wearable tactile sensor assisted by deep learning algorithms is developed, which can realize the functions of gesture recognition and interaction. …”
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
Identifying cognitive impairment with story recall (Wilson et al., 2024)
Published 2024“…</p><p dir="ltr"><b>Conclusions:</b> These results suggest that expository discourse tasks that place demands on executive functions, such as working memory, can be used to identify aging adults who test within range of cognitive impairment. …”
-
132
datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
133
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
134
datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
135
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
136
-
137
-
138
-
139
-
140
The result of Wilcoxon signed-rand test.
Published 2022Subjects: “…evolutionary genetic algorithm…”