Showing 1 - 8 results of 8 for search '(( algorithm l function ) OR ( algorithm python function ))~', query time: 0.24s Refine Results
  1. 1

    Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model by Marina Diachenko (19739092)

    Published 2025
    “…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …”
  2. 2

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…”
  3. 3
  4. 4

    Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100) by peng xin (21382394)

    Published 2025
    “…Bias correction was conducted using a 25-year baseline (1990–2014), with adjustments made monthly to correct for seasonal biases. The corrected bias functions were then applied to adjust the years (2020–2100) of daily rainfall data using the "ibicus" package, an open-source Python tool for bias adjustment and climate model evaluation. …”
  5. 5

    Landscape17 by Vlad Carare (22092515)

    Published 2025
    “…</p><h2>Publication</h2><p dir="ltr">Further details of this dataset, and associated references, are given in the corresponding manuscript: </p><p dir="ltr">Cărare, V., Thiemann, F.L., Morrow, J., Wales, D.J., Pyzer-Knapp, E.O., Dicks, L. (2025). …”
  6. 6

    MCCN Case Study 2 - Spatial projection via modelled data by Donald Hobern (21435904)

    Published 2025
    “…</p><h4><b>Data sources</b></h4><ul><li><b>BradGinns_SOIL2004_SoilData.csv</b> - Soil measurements from the University of Sydney Llara Campey farm site from 2004, corresponding to sites L1, L3 and L4 describing mid-depth, soil apparent electrical conductivity (ECa), GammaK, Clay, Silt, Sand, pH and soil electrical conductivity (EC)</li><li><b>Llara_Campey_field_boundaries_poly.shp</b> - Field boundary shapes for the University of Sydney Llara Campey farm site</li></ul><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate rioxarray pykrige</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Select soil sample measurements for pH or EC at 45 cm depth</li><li>Split sample measurements into 80% subset to model interpolated layers and 20% to test interpolated layers</li><li>Generate STAC metadata for layers</li><li>Load data cube</li><li>Interpolate pH and EC across site using the 80% subset and three different 2D interpolation methods from rioxarray (nearest, linear and cubic) and one from pykrige (linear)</li><li>Calculate the error between each layer of interpolated values and measured values for the 20% setaside for testing</li><li>Compare the mean and standard deviation of the errors for each interpolation method</li><li>Clean up and package results as RO-Crate</li></ol><h4><b>Notes</b></h4><ul><li>The granularity of variability in soil data significantly compromises all methods</li><li>Depending on the 80/20 split, different methods may appear more reliable, but the pykrige linear method is most often best</li></ul><p><br></p>…”
  7. 7

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…”
  8. 8

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”