Search alternatives:
algorithm loss » algorithms less (Expand Search), algorithm allows (Expand Search), algorithm shows (Expand Search)
where function » sphere function (Expand Search), gene function (Expand Search), wave function (Expand Search)
algorithm loss » algorithms less (Expand Search), algorithm allows (Expand Search), algorithm shows (Expand Search)
where function » sphere function (Expand Search), gene function (Expand Search), wave function (Expand Search)
-
1
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
2
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
3
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
4
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
5
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
6
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
7
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
8
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
9
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
10
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
11
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
12
-
13
-
14
Comparison of packet loss quantity.
Published 2024“…In the neighborhood intervals where the nectar sources are firmly connected and relatively independent, the algorithm then conducts a chaotic traversal search. …”
-
15
Search Algorithms and Loss Functions for Bayesian Clustering
Published 2022“…<p>We propose a randomized greedy search algorithm to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. …”
-
16
-
17
Performance of the three algorithms.
Published 2024“…<div><p>Disruptive events cause decreased functionality of transportation infrastructures and enormous financial losses. …”
-
18
Bayesian-frequentist Hybrid Inference in Applications with Small Sample Sizes
Published 2022Subjects: -
19
-
20