Search alternatives:
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
algorithm api » algorithm a (Expand Search), algorithm i (Expand Search), algorithm maml (Expand Search)
algorithm ai » algorithm a (Expand Search), algorithm i (Expand Search), algorithm _ (Expand Search)
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
algorithm api » algorithm a (Expand Search), algorithm i (Expand Search), algorithm maml (Expand Search)
algorithm ai » algorithm a (Expand Search), algorithm i (Expand Search), algorithm _ (Expand Search)
-
1
-
2
-
3
-
4
datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
5
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
6
datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
7
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
Published 2021“…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
8
-
9
-
10
Drug Release Nanoparticle System Design: Data Set Compilation and Machine Learning Modeling
Published 2025Subjects: -
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
Data Sheet 1_Understanding acceptance and resistance toward generative AI technologies: a multi-theoretical framework integrating functional, risk, and sociolegal factors.docx
Published 2025“…Additionally, the manuscript now highlights demographic diversity, including variations in age, gender, and academic discipline, as relevant to AI adoption patterns. Ethical concerns, including algorithmic bias, data ownership, and the labor market impact of AI, are addressed to offer a more holistic understanding of resistance behavior. …”
-
20