Showing 1 - 20 results of 4,542 for search '(( algorithm machine function ) OR ( ((algorithm api) OR (algorithm ai)) function ))', query time: 0.31s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4

    datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf by Santiago Hernández-Orozco (5070209)

    Published 2021
    “…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
  5. 5

    datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip by Santiago Hernández-Orozco (5070209)

    Published 2021
    “…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
  6. 6

    datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf by Santiago Hernández-Orozco (5070209)

    Published 2021
    “…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
  7. 7

    datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip by Santiago Hernández-Orozco (5070209)

    Published 2021
    “…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    S1 Data - by Xutao Liu (13006965)

    Published 2023
    Subjects:
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Data Sheet 1_Understanding acceptance and resistance toward generative AI technologies: a multi-theoretical framework integrating functional, risk, and sociolegal factors.docx by Priyanka Shrivastava (472059)

    Published 2025
    “…Additionally, the manuscript now highlights demographic diversity, including variations in age, gender, and academic discipline, as relevant to AI adoption patterns. Ethical concerns, including algorithmic bias, data ownership, and the labor market impact of AI, are addressed to offer a more holistic understanding of resistance behavior. …”
  20. 20