Showing 1 - 9 results of 9 for search '(( algorithm machine function ) OR ( ((algorithm python) OR (algorithm both)) function ))~', query time: 0.46s Refine Results
  1. 1
  2. 2

    List of Abbreviations by Gursimran Singh (575288)

    Published 2025
    “…For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. …”
  3. 3

    The results of ICA performed using PyNoetic. by Gursimran Singh (575288)

    Published 2025
    “…For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. …”
  4. 4
  5. 5

    Landscape17 by Vlad Carare (22092515)

    Published 2025
    “…This dataset features global potential energy surface representations generated using the energy landscape framework and includes regions crucial for accurately reproducing both thermodynamic and kinetic properties. For each of the selected six molecules (ethanol, malonaldehyde, paracetamol, salicylic acid, azobenzene, and aspirin) we provide all the minima and transition states, along with configurations from the two approximate steepest-descent paths connecting each transition state to the corresponding minima, computed using hybrid-level density functional theory. …”
  6. 6

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…The analysis was conducted in a Jupyter Notebook environment, using Python and libraries such as Scikit-learn and Pandas. …”
  7. 7

    Brain-in-the-Loop Learning for Intelligent Vehicle Decision-Making by Xiaofei Zhang (16483224)

    Published 2025
    “…In this paper, we utilize functional near-infrared spectroscopy (fNIRS) signals as real-time human risk-perception feedback to establish a brain-in-the-loop (BiTL) trained artificial intelligence algorithm for decision-making. …”
  8. 8

    Code by Baoqiang Chen (21099509)

    Published 2025
    “…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
  9. 9

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”