Search alternatives:
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
-
221
-
222
-
223
-
224
-
225
-
226
Table 6_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
Published 2025“…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …”
-
227
Table 7_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
Published 2025“…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …”
-
228
Table 3_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
Published 2025“…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …”
-
229
Table 2_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
Published 2025“…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …”
-
230
Table 1_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
Published 2025“…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …”
-
231
Table 4_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
Published 2025“…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …”
-
232
Table 5_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
Published 2025“…A meta-transcriptome approach was undertaken to interrogate 39,756 genes differentially expressed in response to biotic and abiotic stresses in maize were interrogated for prioritization through seven machine learning (ML) models, such as support vector machine (SVM), partial least squares discriminant analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most significant genes for stress conditions. …”
-
233
-
234
-
235
-
236
-
237
-
238
-
239
-
240