بدائل البحث:
algorithm machine » algorithm achieves (توسيع البحث), algorithm within (توسيع البحث)
machine function » achieve functions (توسيع البحث), sine function (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm machine » algorithm achieves (توسيع البحث), algorithm within (توسيع البحث)
machine function » achieve functions (توسيع البحث), sine function (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
-
141
-
142
Table 2_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.xlsx
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
143
Image 3_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
144
Image 1_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
145
Image 2_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
146
Image 7_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
147
Image 6_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
148
Image 5_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
149
Image 4_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
150
Predicting the Mutagenic Activity of Nitroaromatics Using Conceptual Density Functional Theory Descriptors and Explainable No-Code Machine Learning Approaches
منشور في 2025"…This study integrates conceptual density functional theory (CDFT) descriptors with explainable no-code machine learning (ML) models to predict NA mutagenicity based on Ames test results. …"
-
151
-
152
-
153
Spatial characterization of cancer-associated cell types in human breast cancer malignancies.
منشور في 2025الموضوعات: -
154
-
155
-
156
-
157
-
158
-
159
-
160