Search alternatives:
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
algorithm phase » algorithm based (Expand Search), algorithm where (Expand Search), algorithm pca (Expand Search)
phase function » gcase function (Expand Search), sphere function (Expand Search), rate function (Expand Search)
algorithm machine » algorithm achieves (Expand Search), algorithm within (Expand Search)
machine function » achieve functions (Expand Search), sine function (Expand Search)
algorithm phase » algorithm based (Expand Search), algorithm where (Expand Search), algorithm pca (Expand Search)
phase function » gcase function (Expand Search), sphere function (Expand Search), rate function (Expand Search)
-
141
-
142
Table 1_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.xlsx
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
143
Image 1_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
144
Image 4_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
145
Image 5_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
146
Image 3_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
147
Image 2_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
148
The structure of genetic algorithm (GA).
Published 2024“…First, physico-chemical inputs as bulk density (BD), initial water content (W<sub>i</sub>), saturated water content (W<sub>s</sub>), mean weight diameter (MWD), and geometric mean diameter (GMD) of aggregates, pH, electrical conductivity (EC), and calcium carbonate equivalent (CCE) were measured. Then, radial basis functions (RBFNNs), multilayer perceptron (MLPNNs), hybrid genetic algorithm (GA-NNs), and particle swarm optimization (PSO-NNs) neural networks were utilized to develop PTFs and compared their accuracy with the traditional regression model (MLR) using statistical indices. …”
-
149
-
150
-
151
-
152
-
153
-
154
-
155
-
156
-
157
-
158
Table 1_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx
Published 2025“…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
-
159
Table 4_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx
Published 2025“…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
-
160
Table 5_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx
Published 2025“…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”