بدائل البحث:
algorithm machine » algorithm achieves (توسيع البحث), algorithm within (توسيع البحث)
machine function » achieve functions (توسيع البحث), sine function (توسيع البحث)
algorithm steps » algorithm models (توسيع البحث)
steps function » step function (توسيع البحث), its function (توسيع البحث), cep function (توسيع البحث)
algorithm machine » algorithm achieves (توسيع البحث), algorithm within (توسيع البحث)
machine function » achieve functions (توسيع البحث), sine function (توسيع البحث)
algorithm steps » algorithm models (توسيع البحث)
steps function » step function (توسيع البحث), its function (توسيع البحث), cep function (توسيع البحث)
-
141
-
142
-
143
Table 2_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.xlsx
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
144
Image 3_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
145
Image 1_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
146
Image 2_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
147
Image 7_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
148
Image 6_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
149
Image 5_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
150
Image 4_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif
منشور في 2025"…</p>Methods<p>To address this gap, we constructed a robust prognostic model by integrating over 100 machine learning algorithms—such as LASSO, CoxBoost, and StepCox—based on transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.…"
-
151
Distribution of cross correlations in functional connectivity in ABIDE sample.
منشور في 2024الموضوعات: -
152
Predicting the Mutagenic Activity of Nitroaromatics Using Conceptual Density Functional Theory Descriptors and Explainable No-Code Machine Learning Approaches
منشور في 2025"…This study integrates conceptual density functional theory (CDFT) descriptors with explainable no-code machine learning (ML) models to predict NA mutagenicity based on Ames test results. …"
-
153
-
154
-
155
-
156
-
157
The performance results on benchmark test functions and real-world problems.
منشور في 2025الموضوعات: -
158
-
159
-
160
Adaptive exploration and exploitation method of Improved FOX optimization algorithm.
منشور في 2025الموضوعات: