Showing 21 - 40 results of 2,103 for search '(( algorithm machine function ) OR ( algorithm within function ))', query time: 0.44s Refine Results
  1. 21

    Image 4_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff by Peng Liu (120506)

    Published 2025
    “…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
  2. 22

    Image 5_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff by Peng Liu (120506)

    Published 2025
    “…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
  3. 23

    Image 3_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff by Peng Liu (120506)

    Published 2025
    “…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
  4. 24

    Image 2_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff by Peng Liu (120506)

    Published 2025
    “…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
  5. 25
  6. 26
  7. 27

    Table 1_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx by Jingjing Chen (293564)

    Published 2025
    “…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
  8. 28

    Table 4_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx by Jingjing Chen (293564)

    Published 2025
    “…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
  9. 29

    Table 5_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx by Jingjing Chen (293564)

    Published 2025
    “…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
  10. 30

    Table 2_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx by Jingjing Chen (293564)

    Published 2025
    “…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
  11. 31

    Table 3_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx by Jingjing Chen (293564)

    Published 2025
    “…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
  12. 32
  13. 33

    Data Sheet 1_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.docx by Jingjing Chen (293564)

    Published 2025
    “…A multi-algorithm machine learning framework was employed to optimize predictive performance, with model interpretability achieved through SHapley Additive exPlanations and diagnostic accuracy validated by receiver operating characteristic curves. …”
  14. 34
  15. 35
  16. 36
  17. 37
  18. 38
  19. 39

    Data Sheet 1_Investigating neural markers of Alzheimer's disease in posttraumatic stress disorder using machine learning algorithms and magnetic resonance imaging.pdf by Gabriella Yakemow (20137758)

    Published 2024
    “…Additionally, we utilized two previously established machine learning-based algorithms, one representing AD-like brain activity (Machine learning-based AD Designation [MAD]) and the other focused on AD-like brain structural changes (AD-like Brain Structure [ABS]). …”
  20. 40