بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm phase » algorithm based (توسيع البحث), algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
phase function » phase functions (توسيع البحث), sphere function (توسيع البحث), rate function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm phase » algorithm based (توسيع البحث), algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
phase function » phase functions (توسيع البحث), sphere function (توسيع البحث), rate function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
-
1
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…<p dir="ltr"><b>Opti2Phase: Python Scripts for Two-Stage Focal Reducer Design</b></p><p dir="ltr">The folder <b>Opti2Phase</b> contains the Python scripts used to generate the results presented in the manuscript. …"
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
منشور في 2025"…<p dir="ltr">The <i>zip</i> file contains the code for the functional excitation-inhibition ratio (fE/I) and theta-gamma (θ-γ) phase-amplitude coupling (PAC) analyses described in the paper titled "<b>Hippocampal and cortical activity reflect early </b><b>hyperexcitability</b><b> in an Alzheimer's mouse model</b>" submitted to <i>Brain Communications</i> in April 2025.…"
-
10
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…</li><li>The dataframe of extracted colour features from all leaf images and lab variables (ecophysiological predictors and variables to be predicted)</li><li>Set of scripts used for image pre-processing, features extraction, data analytsis, visualization and Machine learning algorithms training, using ImageJ, R and Python.</li></ol><p dir="ltr">Read the <b>readMe.txt </b>to find detailed information of each file.…"
-
11
Landscape17
منشور في 2025"…In particular, the explicit inclusion of transition states, which are more difficult to characterise using standard molecular dynamics, allows for assessment of global kinetics and comparison of MLIP landscapes with the DFT reference.</p><h3>Density functional theory calculations</h3><p dir="ltr">The reference potential energy landscapes were computed using density functional theory with the ωB97x hybrid-energy exchange correlation functional and a 6-31G(d) basis set within Psi4. …"
-
12
Decoding fairness motivations - repository
منشور في 2020"…All analysis were conducted in Python 2.7.</div><div><br></div><div><b>Behavioral Data:</b><br></div><div><br></div><div><u>Files:</u> </div><div><br></div><div><i>DifffereceOffers.csv </i>- Offers made by participants in Study 1</div><div><i>Diffs_W.csv</i> - Offers made by participants in Study 2</div><div><br></div><div><i>Individual-differences-in-offers2.png</i> - Plot of individual differences as illustrated in the paper</div><div><i>Individual-differences-MeanOffers.png </i>- Individual differences in mean offers in both games as illustrated in the Appendix</div><div><i>SocialvsNonSocial2.png </i>- Difference in Offers between Selfish and strategic players when playing against humans and computers</div><div><br></div><div>Behavioral Data, specfically Ultimatum Game and Dictator Game Offers and Plots resulting from behavioral analysis reported in the following paper:</div><div><br></div><div>S.P.H. …"
-
13
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"