بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm pre » algorithm pca (توسيع البحث), algorithm where (توسيع البحث), algorithm used (توسيع البحث)
algorithm etc » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
pre function » spread function (توسيع البحث), sphere function (توسيع البحث), phase function (توسيع البحث)
etc function » spc function (توسيع البحث), fc function (توسيع البحث), npc function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm pre » algorithm pca (توسيع البحث), algorithm where (توسيع البحث), algorithm used (توسيع البحث)
algorithm etc » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
pre function » spread function (توسيع البحث), sphere function (توسيع البحث), phase function (توسيع البحث)
etc function » spc function (توسيع البحث), fc function (توسيع البحث), npc function (توسيع البحث)
-
281
Table 4_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
منشور في 2024"…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …"
-
282
Table 7_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
منشور في 2024"…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …"
-
283
Table 1_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
منشور في 2024"…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …"
-
284
Table 8_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
منشور في 2024"…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …"
-
285
Navigating complex care pathways–healthcare workers’ perspectives on health system barriers for children with tuberculous meningitis in Cape Town, South Africa
منشور في 2025"…We found that children with TBM navigate multiple levels of care categorised into pre-admission and primary care, hospital admission and inpatient care, and post-discharge follow-up care. …"
-
286
Patentability of 3D bioprinting technologies
منشور في 2025"…The production of bioprinting typically involves three phases: pre-printing, printing and post-printing stages. …"
-
287
Image 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
منشور في 2025"…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…"
-
288
Image 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
منشور في 2025"…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…"
-
289
Data Sheet 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf
منشور في 2025"…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…"
-
290
Image 3_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
منشور في 2025"…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…"
-
291
Table 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.xlsx
منشور في 2025"…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…"
-
292
Data Sheet 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf
منشور في 2025"…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…"
-
293
<b>dGenhancer v2</b>: A software tool for designing oligonucleotides that can trigger gene-specific Enhancement of Protein Translation.
منشور في 2024"…<br> This version requires pre-calculated total Gibbs energies of the tested sequences. …"
-
294
IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems
منشور في 2025"…</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…"
-
295
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"