Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm pre » algorithm pca (Expand Search), algorithm where (Expand Search), algorithm used (Expand Search)
pre function » spread function (Expand Search), sphere function (Expand Search), phase function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » spc function (Expand Search), _ function (Expand Search), a function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm pre » algorithm pca (Expand Search), algorithm where (Expand Search), algorithm used (Expand Search)
pre function » spread function (Expand Search), sphere function (Expand Search), phase function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » spc function (Expand Search), _ function (Expand Search), a function (Expand Search)
-
261
Table 7_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
262
Table 1_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
263
Table 8_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
264
Navigating complex care pathways–healthcare workers’ perspectives on health system barriers for children with tuberculous meningitis in Cape Town, South Africa
Published 2025“…We found that children with TBM navigate multiple levels of care categorised into pre-admission and primary care, hospital admission and inpatient care, and post-discharge follow-up care. …”
-
265
Patentability of 3D bioprinting technologies
Published 2025“…The production of bioprinting typically involves three phases: pre-printing, printing and post-printing stages. …”
-
266
Image 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
267
Image 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
268
Data Sheet 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
269
Image 3_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
270
Table 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.xlsx
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
271
Data Sheet 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
272
Raw LC-MS/MS and RNA-Seq Mitochondria data
Published 2025“…Differentially altered pathways were evaluated by using the enrich plot package in R for visualization of functional enrichment (i.e., dot plot).</p>…”
-
273
<b>dGenhancer v2</b>: A software tool for designing oligonucleotides that can trigger gene-specific Enhancement of Protein Translation.
Published 2024“…<br> This version requires pre-calculated total Gibbs energies of the tested sequences. …”
-
274
IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems
Published 2025“…</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…”
-
275
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”