Showing 161 - 180 results of 275 for search '(( algorithm pre function ) OR ((( algorithm python function ) OR ( algorithm fc function ))))', query time: 0.46s Refine Results
  1. 161

    Block diagram of the proposed method. by Ural Akincioglu (21772538)

    Published 2025
    “…In the pre-processing stage, intrinsic mode functions of the signals were obtained using the ICEEMDAN algorithm. …”
  2. 162

    Interpolated fNIRS signal. by Ural Akincioglu (21772538)

    Published 2025
    “…In the pre-processing stage, intrinsic mode functions of the signals were obtained using the ICEEMDAN algorithm. …”
  3. 163

    Triple window shifting operation. by Ural Akincioglu (21772538)

    Published 2025
    “…In the pre-processing stage, intrinsic mode functions of the signals were obtained using the ICEEMDAN algorithm. …”
  4. 164

    Experimental flowchart. by Ural Akincioglu (21772538)

    Published 2025
    “…In the pre-processing stage, intrinsic mode functions of the signals were obtained using the ICEEMDAN algorithm. …”
  5. 165

    PAM graphs of the runs in Strategy 1. by Ural Akincioglu (21772538)

    Published 2025
    “…In the pre-processing stage, intrinsic mode functions of the signals were obtained using the ICEEMDAN algorithm. …”
  6. 166

    Presentation of the DySCo framework. by Giuseppe de Alteriis (20846230)

    Published 2025
    “…<p>A: What is dynamic Functional Connectivity: i) We can start from any set of brain recordings, where each signal is referred to a brain location (e.g. fMRI, EEG, intracranial recordings in rodents, and more). ii) “Static” Functional Connectivity (FC) is a matrix where each entry is a time aggregated functional measure of interaction between two regions, for example, the Pearson Correlation Coefficient. iii) Dynamic Functional Connectivity (dFC) is a FC matrix (that can be calculated in different ways, see below) that changes with time, under the assumption that patterns of brain interactions are non-stationary. …”
  7. 167
  8. 168

    Study design and deep-learning model architecture. by Sehoon Park (1466026)

    Published 2025
    “…Conv, Convolutional layer; SepConv, Separable convolutional layer; MBConv, Mobile inverted bottleneck convolutional layer (numbers after MBConv indicate layer depth); k3/k5, kernel size 3 or 5; GAP, Global average pooling; FC, Fully connected layer; Swish, Swish activation function; DBP, Diastolic blood pressure, SBP, Systolic blood pressure; HR, Heart rate; DL-IVSS, A deep-learning algorithm leveraging time-series intraoperative vital sign signals; preOp ML, A machine learning model with 103 baseline characteristics.…”
  9. 169

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…”
  10. 170

    NanoDB: Research Activity Data Management System by Lorenci Gjurgjaj (19702207)

    Published 2024
    “…Cross-Platform Compatibility: Works on Windows, macOS, and Linux. In a Python environment or as an executable. Ease of Implementation: Using the flexibility of the Python framework all the data setup and algorithm can me modified and new functions can be easily added. …”
  11. 171

    Code and Data for 'Fabrication and testing of lensed fiber optic probes for distance sensing using common path low coherence interferometry' by Radu Stancu (21165068)

    Published 2025
    “…Distance Sensing</p><p dir="ltr">Code and data to demonstrate extracting distance sensing data from A-scans and to generate Fig. 8 using the algorithm described in Fig. 7. Functions to generate distance measurements are in 'distance_sensing_utilities.py' and an example of how to use this on data in the 'data' folder is in 'distance_sensing_example.py', which generates Fig 8. …”
  12. 172

    PSO-Optimized Electronic Load Controller with Intelligent Energy Recovery for Self-Excited Induction Generator Based Micro-Hydro Systems by MRINAL KANTI RAJAK (21838169)

    Published 2025
    “…The dataset includes: (1) <b>PSO configuration parameters</b> - complete algorithm setup with population size (N=20), adaptive inertia weights (0.9→0.4), time-varying cognitive/social coefficients (c1: 2.5→0.5, c2: 0.5→2.5), search space boundaries for all 10 optimization variables, and convergence criteria specifications; (2) <b>Multi-objective fitness function data</b> - detailed weight adaptation formulas, individual objective convergence statistics (voltage: 15.3 iter, frequency: 19.2 iter, THD: 12.8 iter, energy: 23.0 iter), and composite fitness evolution from 0.537 to 0.903 over 50 iterations; (3) <b>Particle dynamics tracking</b> - complete position and velocity trajectories for all 20 particles across optimization dimensions [Kpv, Kiv, Kdv, Kpf, Kif, Kdf, ma, θphase, fc, Ppump,ref], diversity evolution (100%→8%), and exploration/exploitation transition patterns; (4) <b>Real-time implementation metrics</b> - computational requirements (2.6 kB memory, 67% CPU utilization), execution timing (0.83 ms average, 1.2 ms worst-case), and synchronization protocols for 100 Hz optimization loops; and (5) <b>Validation datasets</b> - performance verification across six different load conditions, convergence statistics, and algorithm robustness testing results demonstrating consistent ±1.8% voltage regulation and ±0.9% frequency stability achievements, all provided in structured CSV/JSON formats with comprehensive documentation under CC-BY license.…”
  13. 173

    Data Sheet 1_Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data.docx by Bailin Pan (20300112)

    Published 2024
    “…</p>Results<p>The study identified 545 marker genes associated with FC in OA. GO and KEGG analyses revealed their biological functions; microarray analysis identified 243 DEGs on which functional-enrichment analysis were conducted. …”
  14. 174

    Data Sheet 2_Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data.csv by Bailin Pan (20300112)

    Published 2024
    “…</p>Results<p>The study identified 545 marker genes associated with FC in OA. GO and KEGG analyses revealed their biological functions; microarray analysis identified 243 DEGs on which functional-enrichment analysis were conducted. …”
  15. 175

    Brain-in-the-Loop Learning for Intelligent Vehicle Decision-Making by Xiaofei Zhang (16483224)

    Published 2025
    “…In this paper, we utilize functional near-infrared spectroscopy (fNIRS) signals as real-time human risk-perception feedback to establish a brain-in-the-loop (BiTL) trained artificial intelligence algorithm for decision-making. …”
  16. 176

    Table 1_Late-onset first epileptic seizure and cerebral small vessel disease: role of juxtacortical white matter lesions.docx by Adrian Nasca (20601542)

    Published 2025
    “…Compared to TIA group, LOFES patients gray matter volume was regionally decreased in the right pre- and postcentral gyrus.</p>Significance<p>By using algorithm-based automated lesion segmentation software tools and VBM analysis we could highlight that a juxtacortical weighting of WML distribution and regionally decreased gray matter volume distinguished LOFES from TIA and PC groups in our sample.…”
  17. 177

    Table 1_Recognition and treatment of attention deficit-hyperactivity disorder in patients with treatment-resistant burning mouth syndrome: a retrospective case study.docx by Kaori Takahashi (187346)

    Published 2025
    “…However, the role of ADHD diagnosis and treatment on BMS and associated brain function abnormalities remains unexplored. Therefore, we aimed to investigate the prevalence of ADHD comorbidity and its assessment using ADHD scales and the therapeutic efficacy of an ADHD-focused algorithm, including pre- and post-treatment cerebral blood flow single-photon emission computed tomography (SPECT) results, in patients with treatment-resistant BMS referred from the outpatient clinic of dental psychosomatic specialists at a tertiary care institution for multidisciplinary treatment.…”
  18. 178

    Mechanomics Code - JVT by Carlo Vittorio Cannistraci (5854046)

    Published 2025
    “…The functions were tested respectively in: MATLAB 2018a or youger, Python 3.9.4, R 4.0.3.…”
  19. 179

    Table 1_Kefir and healthy aging: revealing thematic gaps through AI-assisted screening and semantic evidence mapping.docx by Francesco Chiani (2661328)

    Published 2025
    “…To overcome this fragmentation, we applied an integrative approach that combines a cutting-edge AI-assisted algorithm for evidence screening with a Python-based semantic clustering pipeline. …”
  20. 180

    Table 2_Kefir and healthy aging: revealing thematic gaps through AI-assisted screening and semantic evidence mapping.docx by Francesco Chiani (2661328)

    Published 2025
    “…To overcome this fragmentation, we applied an integrative approach that combines a cutting-edge AI-assisted algorithm for evidence screening with a Python-based semantic clustering pipeline. …”