Showing 661 - 680 results of 850 for search '(( algorithm pre function ) OR ( algorithm ((within function) OR (python function)) ))', query time: 0.47s Refine Results
  1. 661

    Image 4_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  2. 662

    Image 8_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  3. 663

    Image 2_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  4. 664

    Image 9_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  5. 665

    Image 6_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  6. 666

    Image 7_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  7. 667

    Image 5_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  8. 668
  9. 669
  10. 670
  11. 671
  12. 672

    Data Sheet 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  13. 673

    Table 3_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  14. 674

    Data Sheet 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  15. 675

    Table 5_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  16. 676

    Table 4_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  17. 677

    Table 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  18. 678

    Table 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  19. 679

    CIAHS-Data.xls by Yingchang Li (22195585)

    Published 2025
    “…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …”
  20. 680

    Table 1_Development of a prognostic prediction model and visualization system for autologous costal cartilage rhinoplasty: an automated machine learning approach.docx by Aihemaitijiang Niyazi (22355542)

    Published 2025
    “…We proposed an improved metaheuristic algorithm (INPDOA) for AutoML optimization, validated against 12 CEC2022 benchmark functions. …”