Showing 181 - 200 results of 223 for search '(( algorithm pre function ) OR ( algorithm python function ))*', query time: 0.18s Refine Results
  1. 181

    Supplementary file 1_Development of a warning model for drug-induced liver injury in the older patients.docx by Qiaozhi Hu (8775155)

    Published 2025
    “…The performance of 8 ML algorithms—XGBoost, LightGBM, Random Forest, AdaBoost, CatBoost, Gradient Boosting Decision Trees, Artificial Neural Network, and TabNet—was assessed. …”
  2. 182

    Data Sheet 1_Magnetic resonance imaging -based radiomics of the pituitary gland is highly predictive of precocious puberty in girls: a pilot study.docx by Michele Maddalo (14686549)

    Published 2025
    “…</p>Methods<p>45 girls with confirmed diagnosis of CPP (CA:8.4 ± 0.9 yr) according to the current criteria and 47 age-matched pre-pubertal control subjects (CA:8.7 ± 1.2 yr) were retrospectively enrolled. …”
  3. 183

    Code by Baoqiang Chen (21099509)

    Published 2025
    “…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
  4. 184

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
  5. 185

    Landscape17 by Vlad Carare (22092515)

    Published 2025
    “…</p><p dir="ltr">We utilized TopSearch, an open-source Python package, to perform landscape exploration, at an estimated cost of 10<sup>5 </sup>CPUh. …”
  6. 186

    MCCN Case Study 2 - Spatial projection via modelled data by Donald Hobern (21435904)

    Published 2025
    “…This study demonstrates: 1) Description of spatial assets using STAC, 2) Loading heterogeneous data sources into a cube, 3) Spatial projection in xarray using different algorithms offered by the <a href="https://pypi.org/project/PyKrige/" rel="nofollow" target="_blank">pykrige</a> and <a href="https://pypi.org/project/rioxarray/" rel="nofollow" target="_blank">rioxarray</a> packages.…”
  7. 187

    Data Sheet 1_Machine learning models integrating intracranial artery calcification to predict outcomes of mechanical thrombectomy.pdf by Guangzong Li (16696443)

    Published 2025
    “…Eleven ML algorithms were trained and validated using Python, and external validation and performance evaluations were conducted. …”
  8. 188

    O-RAN-Based Cyberinfrastructure Training for FutureG Wireless Comm. and Sensing by Yao Zheng (21752159)

    Published 2025
    “…<pre>The evolution of Open Radio Access Networks (O-RAN) opens unprecedented opportunities for flexible, intelligent, and cost-efficient wireless systems. …”
  9. 189

    Data Sheet 1_Comparison of clinical nasal endoscopy, optical biopsy, and artificial intelligence in early diagnosis and treatment planning in laryngeal cancer: a prospective observ... by Ruifang Hu (21515339)

    Published 2025
    “…Prompt diagnosis is crucial to improving survival and function. Direct laryngoscopy and imaging modalities are conventional diagnostic methods. …”
  10. 190

    Image 3_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  11. 191

    Table 3_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  12. 192

    Table 8_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  13. 193

    Table 2_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  14. 194

    Table 1_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  15. 195

    Image 2_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  16. 196

    Table 6_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  17. 197

    Table 5_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  18. 198

    Image 5_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  19. 199

    Image 1_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tiff by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  20. 200

    Table 7_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”