يعرض 621 - 640 نتائج من 883 نتيجة بحث عن '(( algorithm protein function ) OR ((( algorithm python function ) OR ( algorithm fc function ))))', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 621

    Table3_Transcriptome combined with Mendelian randomization to screen key genes associated with mitochondrial and programmed cell death causally associated with diabetic retinopathy... حسب Shule Jiang (20295756)

    منشور في 2024
    "…Key genes were identified through protein-protein interaction (PPI) analysis using six algorithms (DEgree, DMNC, EPC, MCC, Genes are BottleNeck, and MNC) within Cytoscape software. …"
  2. 622

    Table4_Transcriptome combined with Mendelian randomization to screen key genes associated with mitochondrial and programmed cell death causally associated with diabetic retinopathy... حسب Shule Jiang (20295756)

    منشور في 2024
    "…Key genes were identified through protein-protein interaction (PPI) analysis using six algorithms (DEgree, DMNC, EPC, MCC, Genes are BottleNeck, and MNC) within Cytoscape software. …"
  3. 623

    Image1_Transcriptome combined with Mendelian randomization to screen key genes associated with mitochondrial and programmed cell death causally associated with diabetic retinopathy... حسب Shule Jiang (20295756)

    منشور في 2024
    "…Key genes were identified through protein-protein interaction (PPI) analysis using six algorithms (DEgree, DMNC, EPC, MCC, Genes are BottleNeck, and MNC) within Cytoscape software. …"
  4. 624

    Evaluating docking approaches for prediction of cyclodextrin and cucurbituril host–guest complex structures حسب N.-F.J. Ettema (22683726)

    منشور في 2025
    "…Our results suggest that while docking functions – broadly intended for protein–ligand complexes – are generally limited by either their scoring function’s ability to capture orientation-sensitive interactions, or the effectiveness of their search algorithms to sample conformational space. …"
  5. 625

    CSPP instance حسب peixiang wang (19499344)

    منشور في 2025
    "…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…"
  6. 626

    Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100) حسب peng xin (21382394)

    منشور في 2025
    "…Bias correction was conducted using a 25-year baseline (1990–2014), with adjustments made monthly to correct for seasonal biases. The corrected bias functions were then applied to adjust the years (2020–2100) of daily rainfall data using the "ibicus" package, an open-source Python tool for bias adjustment and climate model evaluation. …"
  7. 627

    Data Sheet 1_Feature selection and aggregation for antibiotic resistance GWAS in Mycobacterium tuberculosis: a comparative study.pdf حسب Kirill Reshetnikov (21562853)

    منشور في 2025
    "…In this study, we evaluated several such methods, namely, logistic regression with different regularization penalty functions, a recently introduced algorithm for solving the best-subset selection problem (ABESS) and “Hungry, Hungry SNPos” (HHS) a heuristic algorithm specifically developed to identify resistance-associated genetic variants in the presence of resistance co-occurrence. …"
  8. 628

    Data Sheet 1_Genome-wide expression in human whole blood for diagnosis of latent tuberculosis infection: a multicohort research.pdf حسب Fan Jiang (144211)

    منشور في 2025
    "…Cohorts were stratified into training (8 cohorts, n = 1,933) and validation sets (3 cohorts, n = 825) based on functional assignment.</p>Results<p>Through Upset analysis, LASSO (Least Absolute Shrinkage and Selection Operator), SVM-RFE (Support Vector Machine Recursive Feature Elimination), and MCL (Markov Cluster Algorithm) clustering of proteinprotein interaction networks, we identified S100A12 and S100A8 as optimal biomarkers. …"
  9. 629

    Image 4_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…Through literature mining and GeneCards database screening, 30 programmed cell death (PCD)-related gene sets (total 11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; |log<sub>2</sub>FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) was constructed using 114 machine learning algorithm combinations, refined via CoxBoost to select 25 key genes. …"
  10. 630

    Table 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx حسب Minhao Huang (4952764)

    منشور في 2025
    "…Through literature mining and GeneCards database screening, 30 programmed cell death (PCD)-related gene sets (total 11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; |log<sub>2</sub>FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) was constructed using 114 machine learning algorithm combinations, refined via CoxBoost to select 25 key genes. …"
  11. 631

    Table 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx حسب Minhao Huang (4952764)

    منشور في 2025
    "…Through literature mining and GeneCards database screening, 30 programmed cell death (PCD)-related gene sets (total 11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; |log<sub>2</sub>FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) was constructed using 114 machine learning algorithm combinations, refined via CoxBoost to select 25 key genes. …"
  12. 632

    Image 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…Through literature mining and GeneCards database screening, 30 programmed cell death (PCD)-related gene sets (total 11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; |log<sub>2</sub>FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) was constructed using 114 machine learning algorithm combinations, refined via CoxBoost to select 25 key genes. …"
  13. 633

    Image 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…Through literature mining and GeneCards database screening, 30 programmed cell death (PCD)-related gene sets (total 11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; |log<sub>2</sub>FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) was constructed using 114 machine learning algorithm combinations, refined via CoxBoost to select 25 key genes. …"
  14. 634

    Table 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx حسب Minhao Huang (4952764)

    منشور في 2025
    "…Through literature mining and GeneCards database screening, 30 programmed cell death (PCD)-related gene sets (total 11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; |log<sub>2</sub>FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) was constructed using 114 machine learning algorithm combinations, refined via CoxBoost to select 25 key genes. …"
  15. 635

    Image 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…Through literature mining and GeneCards database screening, 30 programmed cell death (PCD)-related gene sets (total 11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; |log<sub>2</sub>FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) was constructed using 114 machine learning algorithm combinations, refined via CoxBoost to select 25 key genes. …"
  16. 636

    Sample ESTIMATE score dataset (AR vs CTRL). حسب MaoMeng Wang (22177417)

    منشور في 2025
    "…A gene co-expression network was constructed via the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify disease-related modules. Differentially expressed genes (DEGs) were identified using the linear models for microarray data (limma) R package (version 3.34.7), followed by functional enrichment analysis using DAVID. …"
  17. 637

    STRING PPI network edges dataset. حسب MaoMeng Wang (22177417)

    منشور في 2025
    "…A gene co-expression network was constructed via the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify disease-related modules. Differentially expressed genes (DEGs) were identified using the linear models for microarray data (limma) R package (version 3.34.7), followed by functional enrichment analysis using DAVID. …"
  18. 638

    Structural changes of the nasal mucosa. حسب MaoMeng Wang (22177417)

    منشور في 2025
    "…A gene co-expression network was constructed via the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify disease-related modules. Differentially expressed genes (DEGs) were identified using the linear models for microarray data (limma) R package (version 3.34.7), followed by functional enrichment analysis using DAVID. …"
  19. 639

    General symptom scores of the mice. حسب MaoMeng Wang (22177417)

    منشور في 2025
    "…A gene co-expression network was constructed via the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify disease-related modules. Differentially expressed genes (DEGs) were identified using the linear models for microarray data (limma) R package (version 3.34.7), followed by functional enrichment analysis using DAVID. …"
  20. 640

    Correlated primer sequence table. حسب MaoMeng Wang (22177417)

    منشور في 2025
    "…A gene co-expression network was constructed via the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify disease-related modules. Differentially expressed genes (DEGs) were identified using the linear models for microarray data (limma) R package (version 3.34.7), followed by functional enrichment analysis using DAVID. …"