Showing 21 - 40 results of 42 for search '(( algorithm python function ) OR ((( algorithm b function ) OR ( algorithm models function ))))~', query time: 0.65s Refine Results
  1. 21

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  2. 22
  3. 23
  4. 24
  5. 25

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…</li><li>The dataframe of extracted colour features from all leaf images and lab variables (ecophysiological predictors and variables to be predicted)</li><li>Set of scripts used for image pre-processing, features extraction, data analytsis, visualization and Machine learning algorithms training, using ImageJ, R and Python.</li></ol><p dir="ltr">Read the <b>readMe.txt </b>to find detailed information of each file.…”
  6. 26

    GridScopeRodents: High-Resolution Global Typical Rodents Distribution Projections from 2021 to 2100 under Diverse SSP-RCP Scenarios by Yang Lan (20927512)

    Published 2025
    “…Using occurrence data and environmental variable, we employ the Maximum Entropy (MaxEnt) algorithm within the species distribution modeling (SDM) framework to estimate occurrence probability at a spatial resolution of 1/12° (~10 km). …”
  7. 27

    Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model by Marina Diachenko (19739092)

    Published 2025
    “…<p dir="ltr">The <i>zip</i> file contains the code for the functional excitation-inhibition ratio (fE/I) and theta-gamma (θ-γ) phase-amplitude coupling (PAC) analyses described in the paper titled "<b>Hippocampal and cortical activity reflect early </b><b>hyperexcitability</b><b> in an Alzheimer's mouse model</b>" submitted to <i>Brain Communications</i> in April 2025.…”
  8. 28

    MCCN Case Study 2 - Spatial projection via modelled data by Donald Hobern (21435904)

    Published 2025
    “…</p><h4><b>Data sources</b></h4><ul><li><b>BradGinns_SOIL2004_SoilData.csv</b> - Soil measurements from the University of Sydney Llara Campey farm site from 2004, corresponding to sites L1, L3 and L4 describing mid-depth, soil apparent electrical conductivity (ECa), GammaK, Clay, Silt, Sand, pH and soil electrical conductivity (EC)</li><li><b>Llara_Campey_field_boundaries_poly.shp</b> - Field boundary shapes for the University of Sydney Llara Campey farm site</li></ul><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate rioxarray pykrige</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Select soil sample measurements for pH or EC at 45 cm depth</li><li>Split sample measurements into 80% subset to model interpolated layers and 20% to test interpolated layers</li><li>Generate STAC metadata for layers</li><li>Load data cube</li><li>Interpolate pH and EC across site using the 80% subset and three different 2D interpolation methods from rioxarray (nearest, linear and cubic) and one from pykrige (linear)</li><li>Calculate the error between each layer of interpolated values and measured values for the 20% setaside for testing</li><li>Compare the mean and standard deviation of the errors for each interpolation method</li><li>Clean up and package results as RO-Crate</li></ol><h4><b>Notes</b></h4><ul><li>The granularity of variability in soil data significantly compromises all methods</li><li>Depending on the 80/20 split, different methods may appear more reliable, but the pykrige linear method is most often best</li></ul><p><br></p>…”
  9. 29

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><p dir="ltr"><b>Input:</b></p><ul><li><code>svi_module/svi_data/svi_info.csv</code> - Image metadata from Step 1</li><li><code>perception_module/trained_models/</code> - Pre-trained models</li></ul><p dir="ltr"><b>Command:</b></p><pre><pre>python -m perception_module.pred \<br> --model-weights .…”
  10. 30
  11. 31

    Map Matching on Low Sampling Rate Trajectories Through Deep Inverse Reinforcement Learning and Multi Intention Modeling by Reza Safarzadeh (18072472)

    Published 2024
    “…<p dir="ltr">The codes for the paper titled “<b>Map Matching on Low Sampling Rate Trajectories Through Deep Inverse Reinforcement Learning and Multi-Intention Modeling</b>".…”
  12. 32

    Investigation of cardiac mechanics and mechanical circulatory support therapies in peripartum cardiomyopathy using machine learning and patient-specific computational modelling by Juliet Nagawa (17333779)

    Published 2023
    “…</li></ul><p dir="ltr"> <b>ANN.zip</b></p><ul><li>Matlab and Python programs used to develop machine learning algorithms and developed machine learning models.…”
  13. 33

    Barro Colorado Island 50-ha plot aerial photogrammetry orthomosaics and digital surface models for 2018-2023: Globally and locally aligned time series. by Vicente Vasquez (13550731)

    Published 2023
    “…Grubinger, and H. C. Muller-Landau. 2021b. Surface elevation models and associated canopy height change models for the 50-ha plot on Barro Colorado Island, Panama, for 2014-2019. . …”
  14. 34

    Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100) by peng xin (21382394)

    Published 2025
    “…Bias correction was conducted using a 25-year baseline (1990–2014), with adjustments made monthly to correct for seasonal biases. The corrected bias functions were then applied to adjust the years (2020–2100) of daily rainfall data using the "ibicus" package, an open-source Python tool for bias adjustment and climate model evaluation. …”
  15. 35

    MOMA compared to MFA-derived estimates, carbon yield efficiencies and CBA co-factor profile comparison across unconstrained, manually curated and experimentally constrained solutio... by Laura de Arroyo Garcia (9226096)

    Published 2020
    “…MOMA ranges were estimated using the wild type solution as a reference and sequentially implementing the single-gene knockouts studied by Long et al. (2019) [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1008125#pcbi.1008125.ref046" target="_blank">46</a>], with biomass formation as the objective function. MFA ranges were extracted from a pre-existing dataset (Long et al., 2019), using a Python algorithm to select the minimal and maximal flux ranges.…”
  16. 36

    Mechanomics Code - JVT by Carlo Vittorio Cannistraci (5854046)

    Published 2025
    “…The functions were tested respectively in: MATLAB 2018a or youger, Python 3.9.4, R 4.0.3.…”
  17. 37

    Code and data for evaluating oil spill amount from text-form incident information by Yiming Liu (18823387)

    Published 2025
    “…These are separately stored in the folders “description” and “posts”.</p><h2>Algorithms for Evaluating Release Amount (RA)</h2><p dir="ltr">The algorithms are split into the following three notebooks based on their functions:</p><ol><li><b>"1_RA_extraction.ipynb"</b>:</li><li><ul><li>Identifies oil spill-related incidents from raw incident data.…”
  18. 38

    Code by Baoqiang Chen (21099509)

    Published 2025
    “…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
  19. 39

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
  20. 40

    Decoding fairness motivations - repository by Sebastian Speer (6489207)

    Published 2020
    “…</div><div>To obtain neural activation patterns for multivariate analysis individual time series were modeled using a double γ hemodynamic response function in a single trial GLM design using FSL’s FEAT. …”