بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm both » algorithm blood (توسيع البحث), algorithm b (توسيع البحث), algorithm etc (توسيع البحث)
both function » body function (توسيع البحث), growth function (توسيع البحث), beach function (توسيع البحث)
algorithm fc » algorithm etc (توسيع البحث), algorithm pca (توسيع البحث), algorithms mc (توسيع البحث)
fc function » spc function (توسيع البحث), _ function (توسيع البحث), a function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm both » algorithm blood (توسيع البحث), algorithm b (توسيع البحث), algorithm etc (توسيع البحث)
both function » body function (توسيع البحث), growth function (توسيع البحث), beach function (توسيع البحث)
algorithm fc » algorithm etc (توسيع البحث), algorithm pca (توسيع البحث), algorithms mc (توسيع البحث)
fc function » spc function (توسيع البحث), _ function (توسيع البحث), a function (توسيع البحث)
-
1
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
منشور في 2025"…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
-
2
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
منشور في 2025"…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …"
-
3
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
-
4
PyNoetic’s stimuli generation and recording module, which supports both ERP and SSVEP.
منشور في 2025الموضوعات: -
5
-
6
DataSheet1_The evolution of flexibility and function in the Fc domains of IgM, IgY, and IgE.pdf
منشور في 2024"…Introduction<p>Antibody Fc regions harbour the binding sites for receptors that mediate effector functions following antigen engagement by the Fab regions. …"
-
7
FAR-1: A Fast Integer Reduction Algorithm Compared to Collatz and Half-Collatz
منشور في 2025الموضوعات: -
8
-
9
-
10
-
11
-
12
-
13
The ALO algorithm optimization flowchart.
منشور في 2024"…The average running time of the proposed algorithm in Sphere function and Griebank function was 2.67s and 1.64s, respectively. …"
-
14
The IALO algorithm solution flowchart.
منشور في 2024"…The average running time of the proposed algorithm in Sphere function and Griebank function was 2.67s and 1.64s, respectively. …"
-
15
-
16
Efficient Algorithms for GPU Accelerated Evaluation of the DFT Exchange-Correlation Functional
منشور في 2025"…Kohn–Sham density functional theory (KS-DFT) has become a cornerstone for studying the electronic structure of molecules and materials. …"
-
17
-
18
-
19
The pseudocode for the NAFPSO algorithm.
منشور في 2025"…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"
-
20
PSO algorithm flowchart.
منشور في 2025"…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"