Showing 1,301 - 1,304 results of 1,304 for search '(( algorithm python function ) OR ((( algorithm brain function ) OR ( algorithm setup function ))))', query time: 0.84s Refine Results
  1. 1301

    Expression vs genomics for predicting dependencies by Broad DepMap (5514062)

    Published 2024
    “…If you are interested in trying machine learning, the files Features.hdf5 and Target.hdf5 contain the data munged in a convenient form for standard supervised machine learning algorithms.</p><p dir="ltr"><br></p><p dir="ltr">Some large files are in the binary format hdf5 for efficiency in space and read-in. …”
  2. 1302

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”
  3. 1303

    Data_Sheet_1_Back-Propagation Learning in Deep Spike-By-Spike Networks.pdf by David Rotermund (7213793)

    Published 2019
    “…What is missing, however, are algorithms for finding weight sets that would optimize the output performances of deep SbS networks with many layers. …”
  4. 1304

    Data_Sheet_2_Back-Propagation Learning in Deep Spike-By-Spike Networks.ZIP by David Rotermund (7213793)

    Published 2019
    “…What is missing, however, are algorithms for finding weight sets that would optimize the output performances of deep SbS networks with many layers. …”