Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm steps » algorithm shows (Expand Search), algorithm models (Expand Search)
steps function » step function (Expand Search), its function (Expand Search), cep function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » fc function (Expand Search), spc function (Expand Search), npc function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm steps » algorithm shows (Expand Search), algorithm models (Expand Search)
steps function » step function (Expand Search), its function (Expand Search), cep function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » fc function (Expand Search), spc function (Expand Search), npc function (Expand Search)
-
1
Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements
Published 2021“…In `main.py`, the parameters for the TAMS algorithm are specified (trajectory time, time step, score function, number of particles, type of score threshold, maximum number of iterations, noise level etc.). …”
-
2
GameOfLife Prediction Dataset
Published 2025“…This task is relatively simple for a human to do if a bit tedious, and should theoretically be simple for Machine Learning algorithms. Each cells's state is calculated based off the number of alive neighbour's in the previous step. …”
-
3
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
Published 2025“…</p><p dir="ltr"><b>Input:</b></p><ul><li><code>raw_data/glasgow_open_built/glasgow_open_built_areas.shp</code> - Grid defining sampling points</li></ul><p dir="ltr"><b>Command:</b></p><pre><pre>python svi_module/get_svi_data.py<br></pre></pre><p dir="ltr"><b>Output:</b></p><ul><li><code>svi_module/svi_data/svi_info.csv</code> - Image metadata (IDs, coordinates)</li><li><code>svi_module/svi_data/images/</code> - Downloaded street view images</li></ul><h3>Step 2: Predict Perceptions</h3><p dir="ltr">Use pre-trained deep learning models to predict perceptual qualities (safety, beauty, liveliness, etc.) from street view images.…”