Showing 161 - 180 results of 11,235 for search '(( algorithm python function ) OR ((( algorithm from function ) OR ( algorithm b functional ))))', query time: 1.43s Refine Results
  1. 161

    Contrast enhancement of digital images using dragonfly algorithm by Soumyajit Saha (19726163)

    Published 2024
    “…The experimental observations reveal that the proposed DA-based image contrast enhancement produces high-quality images from its low-contrast counterparts. Comparisons with state-of-art methods ensure the superiority of the proposed algorithm. …”
  2. 162
  3. 163
  4. 164
  5. 165

    Python implementation from Symplectic decomposition from submatrix determinants by Jason L. Pereira (11598632)

    Published 2021
    “…Python implementation of the algorithm and demonstration of how to use the functions.…”
  6. 166

    Algorithm description and the effects of replay and forgetting on model performance. by Georgy Antonov (11938961)

    Published 2022
    “…(C) Left: without MB forgetting, the algorithm’s estimate of reward obtained for a given move corresponds to the true reward function. …”
  7. 167
  8. 168
  9. 169

    Swarm intelligence algorithms for width and length on influence games by Francisco Muñoz (9455441)

    Published 2021
    “…<br><br><div>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--excludenodes EXCLUDENODES]<br><br>Calculates the best Influence Spread set on a Weighted Symmetric Graph using PSO<br></div><div><br></div><div><div>positional arguments:</div><div> file</div><div><br></div><div>optional arguments:</div><div> -h, --help: show this help message and exit</div><div> -a: threat file input contents as an Adjacency Matrix</div><div> -r: reverse order of nodes, from (a,b,w) a -> b will be b -> a</div><div> -d D: line separator to use while parsing</div><div> -t T: number of times to execute</div><div> -i I: number of metaheuristic iterations per execution</div><div> -q Q: fixed quota, use 0 = floor(n/2)+1</div><div> --shape SHAPE: shape functions for binarization - list of implemented shape functions: s2,s2_neg,v2,v4</div><div> --sym: consider graph as symmetric instead of directed</div><div> --folder FOLDER: output folder</div><div> --seed SEED: use custom seed for metaheuristic calcs</div><div> --sum SUM: adds a value to all node labels</div><div> --mh MH: metaheuristic to use - list of implemented metaheuristics: {1: 'Swarm', 2: 'Swarm2', 3: 'Swarm_W', 4:</div><div> 'Swarm_L'}</div><div> --tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</div><div> --notags: do not use first row as node tags - tags will be calculated</div><div> --prune: nodes with outdegree = 0 and indegree > 0, and with outdegree = 1 and neighbor's outdegree > 0 will be excluded</div><div> --excludenodes EXCLUDENODES: nodes to skip, comma separated</div></div>…”
  10. 170

    S1 File - by Yuh-Chin T. Huang (17867207)

    Published 2024
    “…In this study, we developed a computerized algorithm using the python package (pdfplumber) and validated against clinicians’ interpretation. …”
  11. 171

    S1 Dataset - by Yuh-Chin T. Huang (17867207)

    Published 2024
    “…In this study, we developed a computerized algorithm using the python package (pdfplumber) and validated against clinicians’ interpretation. …”
  12. 172
  13. 173
  14. 174
  15. 175
  16. 176
  17. 177
  18. 178

    metropolis_hastings.py;postprocessing.py;folkman_a_b_c_time.py;figures_Inverse_Proliferation.R;README.md from Bayesian inference of a non-local proliferation model by Zuzanna Szymańska (11679819)

    Published 2021
    “…;Auxiliary R (version 3.6.2) code to generate figures presenting the results of the random walk Metropolis-Hastings algorithm for the Bayesian inference of a non-local proliferation function.…”
  19. 179

    Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set? by Minyi Su (1425976)

    Published 2020
    “…Model scoring functions were derived with these machine-learning algorithms on various training sets selected from over 3700 protein–ligand complexes in the PDBbind refined set (version 2016). …”
  20. 180