بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm pre » algorithm where (توسيع البحث), algorithm used (توسيع البحث), algorithm from (توسيع البحث)
pre function » spread function (توسيع البحث), sphere function (توسيع البحث), three function (توسيع البحث)
algorithm 1 » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث), algorithm 8217 (توسيع البحث)
1 function » _ function (توسيع البحث), a function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm pre » algorithm where (توسيع البحث), algorithm used (توسيع البحث), algorithm from (توسيع البحث)
pre function » spread function (توسيع البحث), sphere function (توسيع البحث), three function (توسيع البحث)
algorithm 1 » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث), algorithm 8217 (توسيع البحث)
1 function » _ function (توسيع البحث), a function (توسيع البحث)
-
41
-
42
-
43
A Python Package for the Localization of Protein Modifications in Mass Spectrometry Data
منشور في 2022الموضوعات: -
44
Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements
منشور في 2021"…<div>This directory contains Python 3 scripts implementing the Trajectory Adaptive Multilevel Sampling algorithm (TAMS), a variant of Adaptive Multilevel Splitting (AMS), for the study of rare events. …"
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
54
Pre-trained protein language model.
منشور في 2023"…This paper proposes a novel idea that develops a pre-trained protein sequence embedding model combined with a one-dimensional convolutional neural network, called Embed-1dCNN, to predict protein hotspot residues. …"
-
55
-
56
-
57
The optimal solution set of NYN by using different algorithms.
منشور في 2022الموضوعات: "…evolutionary genetic algorithm…"
-
58
The optimal solution set of HN by using different algorithms.
منشور في 2022الموضوعات: "…evolutionary genetic algorithm…"
-
59
-
60