بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
where function » sphere function (توسيع البحث), gene function (توسيع البحث), wave function (توسيع البحث)
algorithms fc » algorithms mc (توسيع البحث), algorithms _ (توسيع البحث), algorithms a (توسيع البحث)
fc function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
where function » sphere function (توسيع البحث), gene function (توسيع البحث), wave function (توسيع البحث)
algorithms fc » algorithms mc (توسيع البحث), algorithms _ (توسيع البحث), algorithms a (توسيع البحث)
fc function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
-
149
-
150
-
151
Wav2DDK: An automated DDK estimation algorithm (Kadambi et al., 2023)
منشور في 2023"…The clinical utility of the algorithm was demonstrated on a corpus of 7,919 assessments collected longitudinally from 26 healthy controls and 82 ALS speakers. …"
-
152
-
153
RMSE results.
منشور في 2024"…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …"
-
154
Results of the Kherson Area Visual Assessment.
منشور في 2024"…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …"
-
155
Work flow chart.
منشور في 2024"…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …"
-
156
Experimental data.
منشور في 2024"…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …"
-
157
Results of the PY area visual assessment.
منشور في 2024"…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …"
-
158
-
159
-
160