يعرض 141 - 160 نتائج من 12,690 نتيجة بحث عن '(( algorithm python function ) OR ( ((algorithm b) OR (algorithm based)) function ))*', وقت الاستعلام: 0.76s تنقيح النتائج
  1. 141

    The AD-PSO-Guided WOA LSTM algorithm RMSE is based on the objective function compared to different algorithms. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…<p>The AD-PSO-Guided WOA LSTM algorithm RMSE is based on the objective function compared to different algorithms.…"
  2. 142

    An FDA-MIMO radar 2-D parameter estimation algorithm based on graph signal processing حسب Haijun Wang (160510)

    منشور في 2024
    "…<p>To improve the range-angle estimation accuracy of frequency diverse array multiple Input multiple output (FDA-MIMO) radar at low SNR, this letter proposes a joint estimation algorithm of FDA-MIMO radar target range-angle based on graph signal processing (GSP). …"
  3. 143
  4. 144
  5. 145
  6. 146
  7. 147

    An Example for applying LCDG algorithm MRI 3-D volumes. حسب Samineh Mesbah (4506406)

    منشور في 2019
    "…<p>LCDG algorithm output on (a) exemplary 3D FS-MRI image data; (b) probability density functions of the image voxels in Fig 2A, as determined empirically, and as approximated via LCDG using two dominant DGs; (c) the deviations (standard and absolute) between the empirical and estimated marginal probability density functions in Fig 2B; (d) LCDG algorithm output on the dominant and subordinate DGs in the image data in Fig 2A; (e) the final estimated LCDG model of the empirical density function; and (f) the final LCDG output of the conditional probability density functions of light tissue (muscle) and dark tissue (fat) intensities and the empirical density function.…"
  8. 148

    A hybrid algorithm based on improved threshold function and wavelet transform. حسب Bingbing Li (461702)

    منشور في 2024
    "…<p>A hybrid algorithm based on improved threshold function and wavelet transform.…"
  9. 149

    Performance profile of the four algorithms based on the function value of iteration number. حسب Sulaiman M. Ibrahim (20614376)

    منشور في 2025
    "…<p>Performance profile of the four algorithms based on the function value of iteration number.…"
  10. 150
  11. 151
  12. 152
  13. 153

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit حسب Gonzalo Colmenarejo (650249)

    منشور في 2025
    "…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
  14. 154

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  15. 155
  16. 156
  17. 157
  18. 158
  19. 159
  20. 160