يعرض 2,881 - 2,885 نتائج من 2,885 نتيجة بحث عن '(( algorithm python function ) OR ( ((algorithm beach) OR (algorithm both)) function ))*', وقت الاستعلام: 0.27s تنقيح النتائج
  1. 2881

    EMG and data glove dataset for dexterous myoelectric control حسب Agamemnon Krasoulis (6582983)

    منشور في 2019
    "…For all participants (i.e. both able-bodied and amputee), the data glove was worn on the left hand (i.e. contralateral to the arm where the EMG sensors were located). …"
  2. 2882

    Table_1_Molecular mechanisms of pancreatic cancer liver metastasis: the role of PAK2.docx حسب Hao Yang (328526)

    منشور في 2024
    "…Informed by both biological understanding and the outcomes of algorithms, we meticulously identified the ultimate set of liver metastasis-related gene (LRG). …"
  3. 2883

    Image_1_Molecular mechanisms of pancreatic cancer liver metastasis: the role of PAK2.tif حسب Hao Yang (328526)

    منشور في 2024
    "…Informed by both biological understanding and the outcomes of algorithms, we meticulously identified the ultimate set of liver metastasis-related gene (LRG). …"
  4. 2884

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows حسب Pierre-Alexis DELAROCHE (22092572)

    منشور في 2025
    "…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"
  5. 2885

    FCP dataset for forecasting temperature, PV, price, and load حسب Hanwen Zhang (18259666)

    منشور في 2025
    "…</p><p dir="ltr">• To design and develop data-driven algorithms for accurate and reliable charging supplydemand forecasting and cost-optimal scheduling with large-volume and high-resolution data.…"