يعرض 1 - 20 نتائج من 954 نتيجة بحث عن '(( algorithm python function ) OR ( ((algorithm beach) OR (algorithm both)) function ))', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit حسب Gonzalo Colmenarejo (650249)

    منشور في 2025
    "…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
  2. 2

    Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results حسب Se-Hee Jo (20554623)

    منشور في 2025
    "…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …"
  3. 3

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer حسب Morgan Najera (21540776)

    منشور في 2025
    "…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
  4. 4
  5. 5
  6. 6
  7. 7

    Reward function related parameters. حسب Honglei Pang (22693724)

    منشور في 2025
    الموضوعات:
  8. 8
  9. 9
  10. 10
  11. 11

    The ALO algorithm optimization flowchart. حسب Wenjing Wang (181404)

    منشور في 2024
    "…The average running time of the proposed algorithm in Sphere function and Griebank function was 2.67s and 1.64s, respectively. …"
  12. 12

    The IALO algorithm solution flowchart. حسب Wenjing Wang (181404)

    منشور في 2024
    "…The average running time of the proposed algorithm in Sphere function and Griebank function was 2.67s and 1.64s, respectively. …"
  13. 13
  14. 14

    Efficient Algorithms for GPU Accelerated Evaluation of the DFT Exchange-Correlation Functional حسب Ryan Stocks (16867476)

    منشور في 2025
    "…Kohn–Sham density functional theory (KS-DFT) has become a cornerstone for studying the electronic structure of molecules and materials. …"
  15. 15
  16. 16

    The pseudocode for the NAFPSO algorithm. حسب Huichao Guo (14515171)

    منشور في 2025
    "…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"
  17. 17

    PSO algorithm flowchart. حسب Huichao Guo (14515171)

    منشور في 2025
    "…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …"
  18. 18
  19. 19
  20. 20

    Comparison of different algorithms. حسب Dawei Wang (471687)

    منشور في 2025
    "…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …"