يعرض 341 - 360 نتائج من 731 نتيجة بحث عن '(( algorithm python function ) OR ( ((algorithm python) OR (algorithms within)) function ))*', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 341

    Table 4_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  2. 342

    Table 1_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  3. 343

    Image 1_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.tif حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  4. 344

    Table 3_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  5. 345

    Table 7_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  6. 346

    Table 10_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  7. 347

    Image 2_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.tif حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  8. 348

    Table 5_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  9. 349

    Image 3_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.tif حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  10. 350

    Table 2_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  11. 351

    Table 6_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx حسب Peng Zhu (277243)

    منشور في 2025
    "…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
  12. 352

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) حسب Erola Fenollosa (20977421)

    منشور في 2025
    "…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…"
  13. 353

    Bayesian Clustering via Fusing of Localized Densities حسب Alexander Dombowsky (20289372)

    منشور في 2024
    "…The data are then clustered by minimizing the expectation of a clustering loss function that favors similarity to the component labels. …"
  14. 354

    S1 Graphical abstract - حسب José M. Rivera-Arbeláez (12418512)

    منشور في 2025
    "…<div><p>Engineered heart tissues (EHTs) have shown great potential in recapitulating tissue organization, functions, and cell-cell interactions of the human heart <i>in vitro</i>. …"
  15. 355

    Table 1_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx حسب Jingjing Chen (293564)

    منشور في 2025
    "…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"
  16. 356

    Table 4_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx حسب Jingjing Chen (293564)

    منشور في 2025
    "…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"
  17. 357

    Table 5_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx حسب Jingjing Chen (293564)

    منشور في 2025
    "…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"
  18. 358

    Table 2_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx حسب Jingjing Chen (293564)

    منشور في 2025
    "…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"
  19. 359

    Table 3_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx حسب Jingjing Chen (293564)

    منشور في 2025
    "…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"
  20. 360

    Data Sheet 1_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.docx حسب Jingjing Chen (293564)

    منشور في 2025
    "…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"